Microblog Forwarding Prediction Based on Hot Topics
CHEN Jiang1, LIU Wei2,3,4, CHAO Wenhan1, WANG Lihong2
1. School of Computing Beihang University, Beijing 100191, China;
2. National Computer network Emergency Response technical Team/Coordination Center of China, Beijing 100029, China;
3. Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China;
4. University of Chinese Academy of Sciences, Beijing 100049, China)
Abstract:Microblog forwarding is an important way to the information dissemination, and microblog forwarding prediction is of great value in the analysis of microblog influence and microblog topic analysis. Existing methods of microblog forwarding prediction mostly focus on microblog and user attributes. In this paper, a microblog forwarding prediction method based on hot topics is proposed. We quantitatively analyze the impact of hot content and transmission tendency on users’ forwarding behavior, and then introduc features concerned with hot topics such as forwarding interest, forwarding activity and behavior pattern. Finally, we establish the hot topic oriented microblog forwarding prediction model based on the classification algorithm. Our experimental results on real data show that the accuracy of this method is 96.6%, and the max improvement of is 12.14%.
Key words microblog forward; forwarding prediction; hot topic
[1] KortLou. 微博(微型博客).百度百科. http://baike.baidu.com/link?url=Qsdt8nZWb5Q_iTpNaS41Wl-K2ZxMJeaUC8g9cuHWpK2V01Grlj6wiUx7C4170CT-m2988GAfKuQoMHuWdmq1V65C0zVgKyuU1qMYl-Z44yMBe_ , 2015-11-29
[2] Petrovic S, Osborne M, Lavrenko V. RT to Win! Predicting Message Propagation in Twitter[C]//Proceedings of the ICWSM. 2011.
[3] Galuba W, Aberer K, Chakraborty D, et al. Outtweeting the twitterers-predicting information cascades in microblogs[C]//Proceedings of the 3rd conference on Online social networks. 2010, 39(12): 3aAS3.
[4] 李英乐, 于洪涛, 刘力雄. 基于SVM的微博转发规模预测方法[J]. 计算机应用研究, 2013, 30(9): 2594-2597.
[5] 曹玖新, 吴江林, 石伟, 等. 新浪微博网信息传播分析与预测[J]. 计算机学报, 2014, 37(4): 779-790.
[6] Kanavos A, Perikos I, Vikatos P, et al. Modeling ReTweet Diffusion Using Emotional Content[M]. Artificial Intelligence Applications and Innovations. Springer Berlin Heidelberg, 2014: 101-110.
[7] Ma H, Qian W, Xia F, et al. Towards modeling popularity of microblogs[J]. Frontiers of Computer Science Selected Publications from Chinese Universities, 2013, 7(2):171-184.
[8] Ying-Le L I, Hong-Tao Y U, Liu L X. Predict algorithm of micro-blog retweet scale based on SVM[J]. Application Research of Computers, 2013, 30(9):2594-2597.
[9] Zhang Y, Rong L U, Yang Q. Predicting Retweeting in Microblogs[J]. Journal of Chinese Information Processing, 2012, 26(4):109-108.
[10] Pastor-Satorras R, Vespignani A. Epidemic dynamics and endemic states in complex networks[J]. Phys.rev.e, 2001, 63(6):138-158.
[11] Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks.[J]. Physical Review Letters, 2001, 86(14):3200-3203.
[12] Boyd D, Golder S, Lotan G. Tweet, Tweet, Retweet: Conversational Aspects of Retweeting on Twitter[C]//Proceedings of the Hawaii International Conference on. IEEE, 2010:1 - 10.
[13] Suh B, Hong L, Pirolli P, et al. Want to be Retweeted? Large Scale Analytics on Factors Impacting Retweet in Twitter Network[C]//Proceedings of the 2010 IEEE Second International Conference on. IEEE, 2010:177-184.
[14] Yang Z, Guo J, Cai K, et al. Understanding retweeting behaviors in social networks[C]//Proceedings of the 19th ACM International fConference on Information and Knowledge Management. ACM, 2010:1633-1636.
[15] Jiang Y, Counts S. Predicting the Speed, Scale, and Range of Information Diffusion in Twitter[J]. ICWSM,2010,10:355-358.
[16] Hong L, Dan O, Davison B D. Predicting popular messages in twitter[C]//Proceedings of the 20th international conference companion on World wide web. ACM, 2011: 57-58.
[17] Bandari R, Asur S, Huberman B A. The Pulse of News in Social Media: Forecasting Popularity[J]. Sixth International Aaai Conference on Weblogs & Social Media, 2012.
[18] Ma Z, Sun A, Cong G. On predicting the popularity of newly emerging hashtags in twitter[J]. Journal of the American Society for Information Science and Technology, 2013, 64(7): 1399-1410.
[19] Szabo G, Huberman B A. Predicting the popularity of online content[J]. Communications of the ACM, 2010, 53(8): 80-88.
[20] Yang J, Leskovec J. Modeling information diffusion in implicit networks[C]//Proceedings of the 2010 IEEE 10th International Conference on. IEEE, 2010: 599-608.
[21] Music0007. 兴趣. 百度百科. http://baike.baidu.com/subview/45281/8045345.htm#viewPageContent , 2015-11-30.
[22] 宗成庆.统计自然语言处理[M].北京: 清华大学出版社,2008.