Abstract:Social tags are important styles of information organizing on the Web 2.0 era. Tag recommendation can help users collect, search and share online resources effectively. The previous approaches are focused on using single types of textual information, e.g. summary of a movie. But in practice there are various types of textual information that can be used for tag recommendation. For example, a movie contains both summary and comment information. Different types of information reflect different aspects of the movie. Thus we propose a novel approach to combine both summary and comment information to recommend tags. Furthermore, we use different ensemble learning approaches to incorporate the above information. The experimental results show that our proposed approach using different types of information outperform using single types of textual information in the tag recommendation tasks. Key words natural language processing; social tags; ensemble learning
[1] Eck D, Lamere P, Bertin-Mahieux T, and Green S. Automatic Generation of Social Tags for Music Recommendation[C]//Proceedings of the NIPS. 2007, 8: 385-392. [2] Yanbe Y, Jatowt A, Nakamura S, and Tanaka K. Can Social Bookmarking Enhance Search in the Web?[C]//Proceedings of the 7th ACM/IEEE-CS joint conference on Digital libraries. 2007: 107-116. [3] Zhou T C, Ma H, Lyu M, and King I. UserRec: A User Recommendation Framework in Social Tagging Systems[C]//Proceedings of the AAAI. 2010: 1486-1491. [4] Hotho A, Jschke R, Schmitz C, and Stumme G. Trend detection in folksonomies[M].Semantic Multimedia. Springer Berlin Heidelberg, 2006: 56-70. [5] Wetzker R, Zimmermann C, Bauckhage C, and Albayrak S. I tag, you tag: translating tags for advanced user models[C]//Proceedings of the WSDM. 2010: 71-80. [6] Mirizzi R, Ragone A, Di Noia T, and Di Sciascio E. Semantic tags generation and retrieval for online advertising[C]//Proceedings of the CIKM. 2010: 1089-1098. [7] Ohkura T, Kiyota Y, and Nakagawa H. Browsing System for Weblog Articles based on Automated Folksonomy[C]//Proceedings of the WWW. 2006:25-27. [8] Mishne G. AutoTag: a collaborative approach to automated tag assignment for weblog posts[C]//Proceedings of the WWW. 2006:953-954. [9] Blei D M, Ng A Y, and Jordan M I. Latent Dirichlet Allocation[J].Journal of Machine Learning Research,2003:993-1022. [10] Hofmann T. Probabilistic Latent Semantic Indexing[C]//Proceedings of the SIGIR. 1999:50-57. [11] Blei D, and McAuliffe J. Supervised topic models[C]//Proceedings of the NIPS. 2008,20:121-128. [12] Si X, and Sun M. Tag-LDA for Scalable Real-time Tag Recommendation[J].Journal of Computational Information Systems,2009:6(2). [13] Herlocker J L, Konstan J A, Borchers A, Riedl J. An algorithmic framework for performing collaborative filtering[C]//Proceedings of the SIGIR. 1999: 230-237. [14] Herlocker J L, Konstan J A, Terveen L G, and Riedl J. Evaluating collaborative filtering recommender systems[C]//Proceedings of the ACM Transactions on Information Systems (TOIS). 2004, 22(1): 5-53. [15] Resnick P, and Varian H R. Recommender systems[C]//Proceedings of the Communications of the ACM, 1997, 40(3): 56-58. [16] Nakamoto R, Nakajima S, Miyazaki J, and Uemura S. Tag-Based Contextual Collaborative Filtering[J].IAENG International Journal of Computer Science, 2007, 34(2):35-37. [17] Niwa S, and Honiden S. Web Page Recommender System based on Folksonomy Mining [C]//Proceedings of the Information Technology: New Generations. 2006: 388-393. [18] Gemmell J, Shepitsen A, Mobasher B, and Burke R. Personalizing navigation in folksonomies using hierarchical tag clustering[M].Springer Berlin Heidelberg, 2008: 196-205. [19] Santos-Neto E, Ripeanu M, and Iamnitchi A. Tracking user attention in collaborative tagging communities[C]//Proceedings of the International ACM/IEEE Workshop on Contextualized Attention Metadata: Personalized Access to Digital Resources, 2007. [20] Liu X, Wang Y, Liu Z, and Xie M. Tag recommendation based on continuous conditional random fields[C]//Proceedings of the Information Management, Innovation Management and Industrial Engineering, 2009 International Conference on IEEE, 2009, 3: 475-480. [21] Jschke R, Marinho L, Hotho A, and Schmidt-Thieme L. Tag recommendations in social bookmarking systems[J]. Ai Communications, 2008, 21(4): 231-247. [22] Rendle S, Balby Marinho L, Nanopoulos A, and Schmidt-Thieme L. Learning optimal ranking with tensor factorization for tag recommendation[C]//Proceedings of the KDD. 2009: 727-736. [23] Kittler J, Hatef M, Duin R P W, and Matas J. On combining classifiers[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(3): 226-239.