李裕礞,练绪宝,徐博,王健,林鸿飞. 基于用户隐性反馈行为的下一个购物篮推荐[J]. 中文信息学报, 2017, 31(5): 215-222.
LI Yumeng, LIAN Xubao, XU Bo, WANG Jian, LIN Hongfei. Next Basket Recommendation Based on Implicit User Feedback. , 2017, 31(5): 215-222.
基于用户隐性反馈行为的下一个购物篮推荐
李裕礞,练绪宝,徐博,王健,林鸿飞
大连理工大学 计算机科学与技术学院,辽宁 大连 116023
Next Basket Recommendation Based on Implicit User Feedback
LI Yumeng, LIAN Xubao, XU Bo, WANG Jian, LIN Hongfei
School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116023, China
Abstract:“Next Basket” recommendation is a crucial task in E-commerce field. Traditional algorithms can be divided into sequential recommender and general recommender, both of which neglect the impact of implicit feedback behavior and time sensitivity of user's preferences. This paper proposes a “next basket” recommendation framework based on implicit user feedback. We divide the user behaviors into several time windows according to the timestamp of these behaviors, and model the user preference in different dimensions for each window. Then we utilize the convolutional neural network to train a classifier. Compared to traditional linear models and tree models on a real dataset, the proposed model improves the user satisfaction with the recommender system.
[1] Ricci F, Rokach L, Shapira B. Introduction to recommender systems handbook[M]. Springer US, 2011:147-184. [2] Gatzioura A, Sanchezmarre M. A case-based recommendation approach for market basket data[J]. Intelligent Systems IEEE, 2015, 30(1):20-27. [3] Lee J S, Jun C H, Lee J, et al. Classification-based collaborative filtering using market basket data[J]. Expert Systems with Applications, 2005, 29(3):700-704. [4] Wang P, Guo J, Lan Y. Modeling retail transaction data for personalized shopping recommendation[C]//Proceedings of ACM International Conference on Conference on Information and Knowledge Management. ACM, 2014:1979-1982. [5] Rendle S, Freudenthaler C, Schmidt-Thieme L. Factorizing personalized Markov chains for next-basket recommendation[C]//Proccedings of International Conference on World Wide Web, WWW 2010, Raleigh, North Carolina, USA, 2010:811-820. [6] Bengio Y. Learning deep architectures for AI[J]. Foundations & Trends in Machine Learning, 2009, 2(1):1-127. [7] Kalchbrenner N, Grefenstette E, Blunsom P. A convolutional neural network for modelling sentences[J]. arXiv preprint Arxiv, 1404. 2188, 2014. [8] 练绪宝. 基于排序学习和卷积神经网络的推荐算法研究[D]. 大连理工大学硕士学位论文, 2016. [9] Chand C, Thakkar A, Ganatra A. Sequential pattern mining:survey and current research challenges[J]. International Journal of Soft Computing & Engineering, 2012, 2(1):185-193. [10] Zimdars A, Chickering D M, Meek C. Using temporal data for making recommendations[C]//Proceedings of the 17th conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc. , 2001:580-588. [11] Mobasher B, Dai H, Luo T, et al. Using sequential and non-sequential patterns in predictive web usage mining tasks[C]//Proceedings of the 2002 IEEE International Conference on Data Mining. IEEE, 2002:669-672. [12] Chen S, Moore J L, Turnbull D, et al. Playlist prediction via metric embedding[C]//Proceedings of the 18th ACM Knowledge Discovery and Data Mining. 2012:714-722. [13] Wang P, Guo J, Lan Y, et al. Learning hierarchical representation model for nextbasket recommendation[C]//Proccedings of International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2015:403-412. [14] Zeiler M D. ADADELTA:An adaptive learning rate method[J]. Computer Science, 2012. [15] Hinton G E, Srivastava N, Krizhevsky A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. Computer Science, 2012, 3(4):212-223. [16] He H, Garcia E. Learning from imbalanced data[J]. IEEE Transactions on Knowledge & Data Engineering, 2008, 21(9):1263-1284. [17] Dierckx G. Logistic regression model[J]. Encyclopedia of Actuarial Science, 2009, 39(2):261-291. [18] Hearst M A, Dumais S T, Osman E, et al. Support vector machines[J]. IEEE Intelligent Systems, 1998, 13(4):18-28. [19] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32. [20] Friedman J H. Greedy function approximation:a gradient boosting machine[J]. Annals of Statistics, 2000, 29(5):1189-1232.