谭咏梅,刘姝雯,吕学强. 基于CNN与双向LSTM的中文文本蕴含识别方法[J]. 中文信息学报, 2018, 32(7): 11-19.
TAN Yongmei, LIU Shuwen, LV Xueqiang. CNN and BiLSTM Based Chinese Textual Entailment Recognition. , 2018, 32(7): 11-19.
CNN and BiLSTM Based Chinese Textual Entailment Recognition
TAN Yongmei1, LIU Shuwen1, LV Xueqiang2
1.School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2.Beijing Key Laboratory of Internet Culture and Digital Dissemination Research, Beijing Information Science and Technology University, Beijing 100101, China
Abstract:A CNN and BiLSTM based Chinese textual entailment recognition method is presented. By using CNN and BiLSTM, the method can automatically extract relevant features, and then generate the initial result by a fully connected layer. The final result is further processed by semantic rules. Evaluated on the dataset of RITE-VAL in 2014, the method obtains 61.74%, outperforming the top-ranked 61.51% in that evaluation campaign.
[1] Dagan Ido, Glickman Oren, Magnini Bernardo. The PASCAL recognising textual entailment challenge[C] //Proceedings of the International Conference on Machine Learning Challenges: Evaluating Predictive Uncertainty Visual Object Classification, and Recognizing Textual Entailment. Springer-Verlag, 2006: 177-190. [2] 郭茂盛, 张宇, 刘挺. 文本蕴含关系识别与知识获取研究进展及展望[J]. 计算机学报, 2017, 40(4): 889-910. [3] Jagannatha Abhyuday N, Yu Hong. Structured prediction models for RNN based sequence labeling in clinical text[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016: 856. [4] Lample Guillaume, Ballesteros Miguel, Subramanian Sandeep, et al. Neural architectures for named entity recognition[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016: 260-270. [5] Tan Yongmei, Wang Minda, Wang Xiaohui, et al. Recognizing textual entailment using multiple features and filters[C]//Proceedings of the 11th NTCIR Conference, 2014. [6] 刘茂福, 李妍, 姬东鸿. 基于事件语义特征的中文文本蕴含识别[J]. 中文信息学报, 2013, 27(5): 129-136. [7] Shima Hideki, Kanayama Hiroshi, Lee Cheng-wei, et al. Overview of NTCIR-9 RITE: recognizing inference in text[C]//Proceedings of the NTCIR, 2011. [8] Watanabe Yotaro, Miyao Yusuke, Mizuno Junta, et al. Overview of the recognizing inference in text(RITE-2) at NTCIR-10[C]//Proceedings of the 10th NTCIR Conference, 2013. [9] Matsuyoshi Suguru, Miyao Yusuke, Shibata Tomohide, et al. Overview of the NTCIR-11 recognizing inference in text and validation (RITE-VAL) Task[C]//Proceedings of the 11th NTCIR Conference, 2014. [10] Bar-Haim Roy, Berant Jonathan, Dagan Ido. A compact forest for scalable inference over entailment and paraphrase rules[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP 2009, 2009: 1056-1065. [11] Alabbas Maytham, Ramsay Allan. Natural language inference for Arabic using extended tree edit distance with subtrees[J]. Journal of Artificial Intelligence Research, 2014, 48(48): 1-22. [12] Wang Xiaolin, Zhao Hai, Lu Baoliang. BCMI-NLP labeled-alignment-based entailment system for NTCIR-10 RITE-2 Task[C]//Proceedings of the 10th NTCIR Conference, 2013. [13] 王宝鑫. 基于深度神经网络的文本蕴含识别及应用研究[D]. 哈尔滨: 哈尔滨工业大学硕士学位论文, 2016. [14] 王志浩. 文本蕴含识别研究[D]. 北京: 北京邮电大学硕士学位论文, 2015. [15] Hubel David Hunter, Wiesel Torsten Nils. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[J]. Journal of Physiology, 1962, 160(1): 106-154. [16] LeCun Yann, Bottou Léon, Bengio Yoshua, et al. Gradient-based learning applied to document Recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [17] Yoon Kim. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014. [18] Collobert Ronan, Weston Jason, Bottou Léon, et al. Natural language processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011, 12(1): 2493-2537. [19] Hochreiter Sepp, Schmidhuber Jürgen. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. [20] Kolen John, Kremer Stefan. Gradient Flow in Recurrent Nets: the Difficulty of Learning Long-Term Dependencies[M]. Wiley-IEEE Press, 2007. [21] Graves Alex, Schmidhuber Jürgen. 2005 Special Issue: Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J]. Neural Networks, 2005, 18(5-6): 602-610. [22] Zhang Zhichang, Yao Dongren, Mao Longlong, et al. NWNU minimum information recognizing entailment system for NTCIR-11 RITE-3 Task[C]//Proceedings of the 11th NTCIR Conference, 2014. [23] Wu Shihung, Hsu Lijen, Lin Huawei, et al. III & CYUT Chinese textual entailment recognition system for NTCIR-11 RITE-VAL[C]//Proceedings of the 11th NTCIR Conference, 2014.