段利国,高建颖,李爱萍. 机器阅读理解中观点型问题的求解策略研究[J]. 中文信息学报, 2019, 33(10): 81-89.
DUAN Liguo, GAO Jianying, LI Aiping. A Study on Solution Strategy of Opinion-Problems in Machine Reading Comprehension. , 2019, 33(10): 81-89.
机器阅读理解中观点型问题的求解策略研究
段利国,高建颖,李爱萍
太原理工大学 信息与计算机学院,山西 太原 030024
A Study on Solution Strategy of Opinion-Problems in Machine Reading Comprehension
DUAN Liguo, GAO Jianying, LI Aiping
College of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
Abstract:In order to solve the opinion-problems of machine reading comprehension, an end-to-end deep learning model is proposed. In this paper, Bi-GRU is used to contextually encode passages and problems. And then four kinds of attentions, including the concatenated attention, the bilinear attention ,the element-wise dot attention and minus attention, are applied with the fusion of Query2Context and Context2Query attentions to obtain the comprehensive semantic information of the passage and the problem. This model further employs the multi-level attention transfer reasoning mechanism to obtain more accurate comprehensive semantics. The accuracy reaches 76.79% on the AIchallager 2018 opinion reading comprehension Chinese test data set. In addition, using the sentence sequence as input, the method could be boosted to an accuracy of 78.48%.
[1] 梁小波,任飞亮,刘永康,等. N-Reader: 基于双层Self-attention的机器阅读理解模型[J]. 中文信息学报, 2018, 32(10): 130-137. [2] Richardson M,Burges C J C,Renshaw E.MCTest: A challenge dataset for the open-domain machine comprehension of text[J].Empirical Methods in Natural Language Processing,2013:193-203. [3] Lai G, Xie Q, Liu H, et al. Race: Large-scale reading comprehension dataset from examinations[J].arXiv preprint arXiv: 1704.04683,2017. [4] Rajpurkar P,et al.SQuAD: 100,000+questions for machine comprehension of text[J].Empirical Methods in Natural Language Processing,2016:2383-2392. [5] 关勇,吕国英,李茹,等. 面向高考语文阅读理解的篇章标题选择研究[J].中文信息学报, 2018, 32(6): 28-35,43. [6] Zhang S, Zhao H, Wu Y, et al. Dual co-matching network for multi-choice reading comprehension[J]. arXiv preprint arXiv: 1901.09381, 2019. [7] Tan C, Wei F, Wang W, et al. Multiway attention networks for modeling sentence pairs[C]//Proceedings of IJCAI 2018. 2018:4411-4417. [8] Seo M.Bi-directional attention flow for machine comprehension[C]//Proceedings of ICLR2017,2017:1-12. [9] Hermann K M, Tomá Kocˇisky', Grefenstette E, et al. Teaching machines to read and comprehend[C]//Proceedings of the 28th International conference on Neural Information Processing Systems, 2015:1693-1701. [10] 张浩宇,张鹏飞,李真真,等. 基于自注意力机制的阅读理解模型[J]. 中文信息学报, 2018, 32(12): 125-131. [11] Hochreiter S, Schmidhuber J. Long short-term memory[J].Neural Computation,1997,9(8): 1735-1780. [12] Cho K,Van Merrinboer B,Gulcehre C,et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. Empirical Methods in Natural Language Processing,2014:1724-1734. [13] Kadlec R, Schmid M, Bajgar O, et al. Text understanding with the attention sum reader network[J]. arXiv preprint arXiv: 1603.01547, 2016. [14] Chen D.A thorough examination of the CNN/daily mail reading comprehension task[J].arXiv preprint arXiv: 1606.02838,2016. [15] Dhingra B, Liu H, Yang Z, et al. Gated-attention readers for text comprehension[J].arXiv preprint arXiv: 1606.01549, 2016. [16] Tseng B H, Shen S S, Lee H Y, et al.Towards machine comprehension of spoken content: Initial TOEFL listening comprehension test by machine[J]. arXiv preprint arXiv: 1608.06378, 2016. [17] Cui Y, Liu T, Chen Z, et al.Consensus attention-based neural networks for Chinese reading comprehension[J].arXiv preprint arXiv: 1607.02250, 2016. [18] Cui Y,et al.Attention-over-attention neural networks for reading comprehension[C]//Proceedings of ACL2017, 2017:593-602. [19] Wang S, Jiang J. Machine comprehension using match-lstm and answer pointer[J].arXiv preprint arXiv: 1608.07905, 2016. [20] Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th Internations Neural Information Processing Systems, 2013:3111-3119. [21] Kingma D P, Ba J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv: 1412.6980, 2014.