Abstract:Aiming at the accurate and rapid diagnosis of complications, this paper proposes an auxiliary diagnosis model based on knowledge graph, representation model and deep neural network. Firstly, a medical knowledge graph is constructed, which is represented by the vector for each entity and relation. Then according to chief complaints of the patients, the symptom entities are detected and again represented by vectors. Eventually, the above two kind of vectors are input to the CNN-DNN classification model joint with the index representation to diagnose the complications. The experiment chooses three complications of diabetes: hypertension, diabetic nephropathy and diabetic retinopathy. The accuracy of the proposed model is improved by 5%, 5%, 14% compared with the classical machine learning methods, respectively; and 27%, 6%, 9% higher than that of previous DNN model.
[1] 徐增林,盛泳潘,贺丽荣,等.知识图谱技术综述[J]. 电 子科技大学学报,2016,45(4): 589-606. [2] Vang K J. Ethics of Google’s knowledge graph: Some considerations[J]. Journal of Information Communication & Ethics in Society, 2014,11(4): 245-260. [3] 侯梦薇,卫荣,陆亮,等.知识图谱研究综述及其在医疗领域的应用[J].计算机研究与发展,2018,55(12): 2587-2599. [4] 陈德华,殷苏娜,乐嘉锦,等.一种面向临床领域时序知识图谱的链接预测模型[J]. 计算机研究与发展,2017,54(12): 2687-2697. [5] García-Crespo , Rodríguez A, Mencke M, et al. ODDIN: Ontology-driven differential diagnosis based on logical inference and probabilistic refinements[J]. Expert Systems with Applications, 2010,37(3): 2621-2628. [6] 聂莉莉,李传富,许晓倩,等.人工智能在医学诊断知识图谱构建中的应用研究[J].医学信息学, 2018,39(06): 7-12. [7] Dreiseitl S, Ohno-Machado L, Kittler H, et al. A comparison of machine learning methods for the diagnosis of pigmented skin lesions[J]. Journal of Biomedical Informatics,2001,34(1): 28-36. [8] Moayedi F, Azimifar Z, Boostani R, et al. Contourlet-based mammography mass classification using the SVM family[J]. Computers in Biology & Medicine,2010,40(4): 373-383. [9] Zolbanin H M, Delen D, Zadeh A H. Predicting overall survivability in comorbidity of cancers: A data mining approach[J]. Decision Support Systems,2015,74(C): 150-161. [10] 赵强利,蒋艳凰,徐明.选择性集成算法分类与比较[J]. 计算机工程与科学,2012,34(02): 134-138. [11] Shenfield A, Rostami S. A multi objective approach to evolving artificial neural networks for coronary heart disease classification[C]//Proceedings of the 2015 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE, 2015: 1-8. [12] 石峻,邓鑫,谭亮,等.用于诊断心血管疾病的融合多级神经网络及优化[C].第36届中国控制会议论文集,2017: 2893-3898. [13] 刘铭,聂磊,周芷茜.T-S模糊神经网络在冠心病智能诊断中的应用[J].科技导报,2018,36(17): 91-96. [14] 夏江南,王杜娟,王延章,等.基于结构自适应模糊神经网络的前列腺癌诊断方法[J].系统工程理论与实践, 2018,38(05): 1331-1342. [15] 刘迷迷,蔡永铭.基于多层感知神经网络的糖尿病并发症预测研究[J]. 软件,2018,39(10): 30-35. [16] 朱丹红,郑辉哲,何斌杰.基于BP神经网络的肿瘤手术麻醉风险评估模型[J].中国现代医药, 2019,21(06): 10-12. [17] Bordes A, Usunier N, garcíadurDa'n A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the International Conference on Neural Information Processing Systems, 2013: 2787-2795. [18] Zhen W, Zhang J, Feng J, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of 28th AAAI Conference on Artificial Intelligence. Québec, Canada, 2014: 1112-1119. [19] Lin Y, Liu Z, Sun M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin Texas, USA. 2015: 2181-2187. [20] 丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报, 2011,40(01): 2-10. [21] 方匡南,吴见彬,朱建平,等. 随机森林方法研究综述[J].统计与信息论坛,2011,26(03): 32-38.