肖永磊,刘盛华,刘 悦,程学旗,赵文静,任 彦,王宇平
2014, 28(4):
21-28.
随着微博、照片分享等社会化媒体的快速发展,每天产生了大量的短文本内容如评论、微博等,对其进行深入挖掘有重大的应用价值和学术意义。该文选取微博作为例子,详细阐述我们提出的方法。微博信息流因其简短和实时的特性而具有非常大的价值,已经成为市场营销,股票预测、舆情监控等应用的重要信息源。尽管如此,微博内容特征极其稀疏、上下文语境提取困难,使得微博信息的挖掘面临着很大挑战。因此,我们提出一种基于Wikipedia的微博语义概念扩展方法,通过自动识别那些与微博信息语义相关的Wikipedia概念来丰富它的内容特征,从而有效提高微博信息数据挖掘和分析的效果。该文工作首先通过可链接性剪枝、概念关联和消歧,发现微博信息中重要的n-gram所对应的Wikipedia概念;其次,采用基于概念-文档关联矩阵的NMF分解(非负矩阵分解)方法获取Wikipedia概念之间的语义近邻,为微博信息扩展相关的语义概念。基于TREC 2011的微博数据集和Wikipedia 2011数据集进行实验,与已有两个相关研究工作比较,该文提出的方法取得了较好的效果。