|
|
Bi-directional Parsing Method of Chinese Macro Discourse Based on Pointer Network |
HE Longwang, FAN Yaxin, CHU Xiaomin, JIANG Feng, LI Junhui, LI Peifeng |
School of Computer Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China |
|
|
Abstract Macro discourse structure analysis aims to facilitate the understanding of the content and purpose in a discourse by revealing its structure. This paper proposes a pointer network model integrating top-down and bottom-up construction strategies. It can use the semantic information of the two construction strategies at the same time, so as to select the appropriate construction method. Experiments on Chinese Macro Chinese Discourse Treebank (MCDTB 2.0) show that the model proposed in this paper can effectively reduce the error propagation in the construction process and achieve the best performance.
|
Received: 20 November 2021
|
|
|
|
|
[1] LIAKATA M, DOBNIK S, Saha S, et al. A discourse-driven content model for summarising scientific articles evaluated in a complex question answering task[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2013: 747-757. [2] MEYER T,POPESCU BELIS A. Using sense-labeled discourse connectives for statistical machine translation[C]//Proceedings of the EACL Workshop on Hybrid Approaches to Machine Translation, 2012. [3] GUZMN F, JOTY S, MRQUEZ L, et al. Using discourse structure improves machine translation evaluation[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 2014: 687-698. [4] PELDSZUS A, STEDE M. Joint prediction in mst-style discourse parsing for argumentation mining[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2015: 938-948. [5] ATKINSON J, MUNOZ R. Rhetorics-based multi-document summarization[J]. Expert Systems with Applications, 2013, 40(11): 4346-4352. [6] FERREIRA R, DE SOUZA CABRAL L, FREITAS F, et al. A multi-document summarization system based on statistics and linguistic treatment[J]. Expert Systems with Applications, 2014, 41(13): 5780-5787. [7] COHAN A,GOHARIAN N. Scientific article summarization using citation-context and article's discourse structure[J]. arXiv preprint arXiv: 1704.06619, 2017. [8] PRESUTTI V, DRAICCHIO F, GANGEMI A. Knowledge extraction based on discourse representation theory and linguistic frames[C]//Proceedings of the International Conference on Knowledge Engineering and Knowledge Management. Springer, Berlin, Heidelberg, 2012: 114-129. [9] ZOU B, ZHOU G, ZHU Q. Negation focus identification with contextual discourse information[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 2014: 522-530. [10] JIANG F, XU S, CHU X, et al. MCDTB: A macro-level Chinese discourse treebank[C]//Proceedings of the 27th International Conference on Computational Linguistics, 2018: 3493-3504. [11] FAN Y, JIANG F, CHU X, et al. Combining global and local information to recognize Chinese macro discourse structure [C]//Proceedings of the 19th Chinese National Conference on Computational Linguistics, 2020: 183-194. [12] LIU L, LIN X,JOTY S, et al. Hierarchical pointer net parsing[J]. arXiv preprint arXiv: 1908.11571, 2019. [13] LIN X, JOTY S, JWALAPURAM P, et al. A unified linear-time framework for sentence-level discourse parsing[OL]https://www.aclweb.org/anthology/p19-1400. [14] KOTO F, LAU J H, BALDWIN T. Top-down discourse parsing via sequence labelling[J]. arXiv preprint arXiv: 2102.02080, 2021. [15] ZHOU Y, CHU X, LI P, et al. Constructing Chinese macro discourse tree via multiple views and word pair similarity[C]//Proceedings of the CCF International Conference on Natural Language Processing and Chinese Computing. Springer, Cham, 2019: 773-786. [16] JIANG F, CHU X, LI P, et al. Chinese paragraph-level discourse parsing with global backward and local reverse reading[C]//Proceedings of the 28th International Conference on Computational Linguistics, 2020: 5749-5759. [17] JIANG F, FAN Y, CHU X, et al. Hierarchical macro discourse parsing based on topic segmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(14): 13152-13160. [18] FENG V W, HIRST G. A linear-time bottom-up discourse parser with constraints and post-editing[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 2014: 511-521. [19] LI Q, LI T, CHANG B. Discourse parsing with attention-based hierarchical neural networks[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2016: 362-371. [20] KOBAYASHI N,HIRAO T, NAKAMURA K, et al. Split or merge: Which is better for unsupervised RST parsing?[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, 2019: 5797-5802. [21] CARLSON L,MARCU D, OKUROWSKI M E. Building a discourse-tagged corpus in the framework of rhetorical structure theory[M]. Current and New Directions in Discourse and Dialogue. Springer, Dordrecht, 2003: 85-112. [22] MABONA A, RIMELL L, CLARK S, et al. Neural generative rhetorical structure parsing[J]. arXiv preprint arXiv: 1909.11049, 2019. [23] FRIED D, STERN M, KLEIN D. Improving neural parsing by disentangling model combination and reranking effects[J].arXiv preprint arXiv: 1707.03058, 2017. [24] ZHANG L, TAN X, KONG F, et al. A recursive information flow gated model for RST-style text-level discourse parsing[C]//Proceedings of the CCF International Conference on Natural Language Processing and Chinese Computing. Springer, Cham, 2019: 231-241. [25] KOBAYASHI N,HIRAO T, KAMIGAITO H, et al. Top-down RST parsing utilizing granularity levels in documents[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(05): 8099-8106. [26] NGUYEN T T, NGUYEN X P, JOTY S, et al. RST parsing from scratch[J]. arXiv preprint arXiv: 2105.10861, 2021. [27] VINYALS O, FORTUNATO M, JAITLY N. Pointer networks[J]. arXiv preprint arXiv: 1506.03134, 2015. [28] CUI Y, CHE W, LIU T, et al. Revisiting pre-trained models for Chinese natural language processing[J]. arXiv preprint arXiv: 2004.13922, 2020. [29] CHO K, VANMERRINBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv preprint arXiv: 1406.1078, 2014. [30] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
|
|
|