Knowledge Representation and Acquisition
HONG Wenxing, HU Zhiqiang, WENG Yang, ZHANG Heng, WANG Zhu, GUO Zhixin
2020, 34(1): 34-44.
Legal knowledge centered cognitive intelligence is an important topic for judicial artificial intelligence. This paper proposes an automated knowledge graph construction approach for judicial case facts. Based on the pre-training model, models for entity recognition and relation extraction are presented. For the entity recognition task, two pre-training based entity recognition models are compared. For the relation extraction task, a multi-task joint semantic relation extraction model is proposed incorporating translating embeddings. The knowledge representation learning of case facts is obtained while completing the relation extraction task. For “motor vehicle traffic accident liability dispute”, compared with the baseline model, the entity recognition can be increased by 0.36 in F1 score, and the relation extraction by 2.37 F1 score. Based on the proposed method, a case facts knowledge graphs are established on a couple of hundred thousand judicial documents, enabling the semantic computing for judicial artificial intelligence applications such as case retrieval.