本文讨论自然语言处理的计算模型。目前已经存在有各种类型的语言计算模型,如分析模型、概率统计模型、混合模型等,这些模型各具特色,并存在其自身的局限性。自然语言处理作为一个不适定问题,我们将讨论求解这类问题的本质困难,面临的挑战,以及解决这些困难的途径。
Abstract
In this paper, we will discuss the computational models of natural language processing. There have been several kinds of computational models such as analytical model, statistical model, hybrid model, etc; each has its own characteristics and limitations. As an ill-posed problem, we’ll discuss what the essential hardness the natural language processing has, what challenge we will confront with, and what measures we’ll adopted to solve the difficulty.
关键词
人工智能 /
自然语言处理 /
计算模型 /
分析模型 /
概念统计模型 /
混合模型 /
不适定问题
{{custom_keyword}} /
Key words
artificial intelligence /
natural language processing /
computational model /
analytical model /
statistical model /
hybrid model /
ill-posed problem
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王晓龙,关毅,等.计算机自然语言处理[M]. 北京: 清华大学出版社,2005.
[2] Gibson, E., Linguistic complexity: Locality of syntactic dependencies [J]. Cognition, 1998, 68: 1-76.
[3] Daniel Grodner, Edward Gibson and Duane Watson. The influence of contextual contrast on syntactic processing: evidence for strong-interaction in sentence comprehension [J]. Cognition 2005, 95: 275-296.
[4] Silvia Gennari and David Poeppel. Processing correlates of lexical semantic complexity [J]. Cognition 2003, 89: B27-B41.
[5] Tessa Warren and Edward Gibson. The influence of referential processing on sentence complexity [J]. Cognition 2002, 85: 79-112.
[6] Gerry Altmann, Mark Steedman. Interaction with context during human sentence processing [J]. Cognition 1988, 30: 191-238.
[7] Douglas Roland, Jeffrey L. Elman and Victor S. Ferreira, Why is that? Structural prediction and ambiguity resolution in a very large corpus of English sentences [J]. Cognition 2006, 98: 245-272.
[8] Tikhonv, A. N.,Arsenin, V. Y.. Solution of III—posed problems [M]. New York: Winston/Wiley 1977.
[9] Bakushinsky, A., Goncharsky, A.. Ill-posed problems: Theory and Applications [M]. Dordrecht/Boston/London: Kluwer Academic Publishers, 1994.
[10] Chomsky, N.. Syntactic structures [M]. The Hague: Mouton, 1957.
[11] Skinner, B.F., Verbal Learning [M]. New York: Appleton-Century-Crofts, 1957.
[12] Christopher D. Manning,Hinrich Schütze. Foundations of Statistical Natural Language Processing [M]. Cambridge, Massachusetts: The MIT Press 1999.
[13] Vladamir N. Vapnik, Statistical Learning Theory [M]. New York: John Wiley & Sons, Inc., 1998.
[14] Aue, Anthony, Arul Menezes, Robert Moore, et al. Statistical Machine Translation Using Labeled Semantic Dependency Graphs [A]. In: Proceedings of the 10th International Conference on Theoretical and Methodological Issues in Machine Translation [C]. Baltimore, 2004.
[15] Pinkham, J, and M. Corston-Oliver, Adding Domain Specificity to an MT System [A]. In: Proceedings of the Workshop on Data-driven Machine Translation at 39th Annual Meeting of the Association for Computational Linguistics [C]. Toulouse, France, 2001, 103-110.
[16] Richardson, S., W. Dolan, A. Menezes et al. Achieving Commercial-quality translation with example-based methods [A]. In: Proceedings of MT Summit VIII [C]. Santiago De Compostela, Spain, 2001, 293-298.
[17] Wu Andi. Statistically-Enhanced New Word Identification in a Rule-Based Chinese System. In: Proceedings of the Second Chinese Language Processing Workshop [C]. Hong Kong, China, 2000, 46-51.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(60621062);国家973资助项目(2003CB317007,2004CB318108)
{{custom_fund}}