基于层次聚类的自适应信息过滤学习算法

洪宇,张宇,刘挺,郑伟,龚诚,李生

PDF(1095 KB)
PDF(1095 KB)
中文信息学报 ›› 2007, Vol. 21 ›› Issue (3) : 47-53.
综述

基于层次聚类的自适应信息过滤学习算法

  • 洪宇,张宇,刘挺,郑伟,龚诚,李生
作者信息 +

Learning Algorithm of Adaptive Information FilteringBased on Hierarchy Clustering

  • HONG Yu, ZHANG Yu, LIU Ting, ZHENG Wei, GONG Cheng, LI Sheng
Author information +
History +

摘要

本文采用一种基于层次聚类的自适应学习策略,从系统反馈的信息流中,动态提取一类最优信息的质心更新用户模型,有效屏蔽了阈值失真和初始信息稀疏造成的大量反馈噪声,并且能够近似模仿人工反馈,完善自适应学习机制的智能性。

Abstract

This paper adopts an adaptive learning algorithm based on hierarchy clustering to update user profile, which continuously abstract the cancroids of one class of optimum information from the feedback flow of system, which effectively shield the learning process from plenty of feedback noises produced by distorted threshold and sparseness of initial information, which also can imitate artificial feedback approximately to perfect the intelligence of adaptive learning mechanism.

关键词

计算机应用 / 中文信息处理 / 自适应信息过滤 / 用户模型 / 相关反馈 / 阈值 / 层次聚类

Key words

computer application / Chinese information processing / adaptive information filtering / user profile / relevant feedback / threshold / hierarchy clustering

引用本文

导出引用
洪宇,张宇,刘挺,郑伟,龚诚,李生. 基于层次聚类的自适应信息过滤学习算法. 中文信息学报. 2007, 21(3): 47-53
HONG Yu, ZHANG Yu, LIU Ting, ZHENG Wei, GONG Cheng, LI Sheng. Learning Algorithm of Adaptive Information FilteringBased on Hierarchy Clustering. Journal of Chinese Information Processing. 2007, 21(3): 47-53

参考文献

[1] 王斌, 潘文锋. 基于内容的垃圾邮件过滤技术综述[J]. 中文信息学报,2005(5): 1-10.
[2] Belkin NJ, Croft W B. Information filtering and information retrieval: two sides of the same coin [J]. Communications of ACM, 1994, 35 (12): 29-38.
[3] Robertson S and Soboroff I. The TREC-10 filtering track final report [A]. In: Proceeding of Tenth Text Retrieval Conference[C]. Gaithersburg, USA: MD, 2001, 26-37.
[4] Robertson S and Soboroff I. The TREC-11 filtering track final report [A]. In: Proceeding of Eleventh Text Retrieval Conference [C]. Gaithersburg, USA: MD, 2002, 26-37.
[5] Yang Y, Yoo S, Zhang J, Kisiel B. Robustness of Adaptive Filtering Methods In a Cross-benchmark Evaluation [A]. In: Proceedings of the 28th annual international ACM SIGIR [C]. Salvador, Brazil: ACM Press, 2005, 33-39.
[6] Ault T, Yang Y. Knn, rocchio and metrics for information filtering at trec-10[A]. In Proceeding of Tenth Text Retrieval Conference [C]. Gaithersburg, USA: MD, 2001, 84-92.
[7] Allan J. Incremental relevance feedback for information filtering [A]. In: Proceedings of the 19th annual international ACM SIGIR[C]. Zurich Switzerland: Center for Intelligent Information Retrieval, 1996, 270-277.
[8] Zhang Y and Callan J. The bias problem and language models in adaptive filtering [A]. In Proceeding of Tenth Text Retrieval Conference[C]. Gaithersburg, USA: MD, 2001, 34-41.
[9] Zhang Y and Callan J. Maximum likelihood estimation for filtering thresholds [A]. In The Twenty Fourth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’02) [C]. New York: The Association for Computing Machinery. 2002, 294-302.
[10] Yang Y, Kisiel B. Margin-based Local Regression for Adaptive Filtering [A]. In: Proceedings of the twelfth international conference on Information and knowledge management [C]. New Orleans, Louisiana, USA: CIKM, 2003, 88-95.
[11] 甄彤. 基于层次与划分方法的聚类算法研究[J].计算机工程与应用, 2004, 01(6): 178-180.
[12] 苏中, 马少平, 杨强等. 基于Web-Log Mining的Web文档聚类[J]. 软件学报, 2002, 13(01): 99-104.
[13] 吴帆, 李石君. 一种高效的层次聚类分析算法[J].计算机工程, 2004, 30(9):70-71.
[14] Wang L, Kitsuregawa M. Use Link-based Clustering to Improve Web Search Results [A]. In: Proceedings of the second International Conference on Web information Systems Engineering [C]. Washington,DC: WISE, 2001, 119-128.
[15] Zhang T, Ramakrishnan R, Livny M. BIRCH: an efficient data clustering method for very large databases [A]. In: Proceedings of the 1996 ACM SIGMOD international conference[C]. Montreal: ACM Press, 1996, 103-114.
[16] Zhang T, Ramakrishnan R, Livny M. Zhang. BIRCH: a new data clustering algorithm and its applications [J]. Journal of Data Mining and Knowledge Discovery, 1997, 1(2): 141-182.

基金

国家863计划资助项目(2006AA012148);国家航空基金资助项目(05J54011); 辽宁省自然科学基金资助项目(20042004)
PDF(1095 KB)

Accesses

Citation

Detail

段落导航
相关文章

/