基于树核函数的实体语义关系抽取方法研究

庄成龙,钱龙华,周国栋

PDF(455 KB)
PDF(455 KB)
中文信息学报 ›› 2009, Vol. 23 ›› Issue (1) : 3.
综述

基于树核函数的实体语义关系抽取方法研究

  • 庄成龙,钱龙华,周国栋
作者信息 +

Research on Tree Kernel-Based Entity Semantic Relation Extraction

  • ZHUANG Cheng-long, QIAN Long-hua, ZHOU Guo-dong
Author information +
History +

摘要

该文描述了一种改进的基于树核函数的实体语义关系抽取方法,通过在原有关系实例的结构化信息中加入实体语义信息和去除冗余信息的方法来提高关系抽取的性能。该方法在最短路径包含树的基础上,首先加入实体类型、引用类型等与实体相关的语义信息,然后对树进行裁剪,去掉修饰语冗余和并列冗余信息,并扩充所有格结构,最后生成实体语义关系实例。在ACE RDC 2004基准语料上进行的关系检测和7个关系大类抽取的实验表明,该方法在较大程度上提高了实体语义关系识别和分类的效果,F值分别达到了79.1%和71.9%。

Abstract

This paper describes an improved tree kernel-based approach to entity semantic relation extraction, where the performance is improved by incorporation of entity-related semantic information into, the structured representation of relation instances and the pruning of redundant information. Starting from the Shortest Path-enclosed Tree for a relation instance, entity-relation semantic information, such as entity types, subtypes, and mention types etc., are first uniformly appended. Then modifications to noun phrases and redundant information in conjunction coordination structures are removed away, but the possessive structure is further included. With such generated appropriate representation of the relation instance, experiments on the ACE RDC 2004 benchmark corpus shows that our method significantly improves the performance, achieving the F-measure of 79.1% and 71.9% on the task of relation detection and top-level relation extraction respectively.

关键词

计算机应用 / 中文信息处理 / 实体关系抽取 / 树核函数 / 语义信息

Key words

computer application / Chinese information processing / entity relation extraction / tree kernel function / semantic information

引用本文

导出引用
庄成龙,钱龙华,周国栋. 基于树核函数的实体语义关系抽取方法研究. 中文信息学报. 2009, 23(1): 3
ZHUANG Cheng-long, QIAN Long-hua, ZHOU Guo-dong. Research on Tree Kernel-Based Entity Semantic Relation Extraction. Journal of Chinese Information Processing. 2009, 23(1): 3

参考文献

[1] MUC[EB/OL]. http://www.itl.nist.gov/iaui/874.02/related_project/muc/,1987-1998.
[2] ACE. The Automatic Context Extraction Project[EB/OL].http://www.ldc.upen.edu/Project/ACE,2002-2005.
[3] Collins M,Duffy N. Convolution Kernels for Natural Language[C]//NIPS, 2001.
[4] Zelenko D,Aone C,Richardella A. Kernel Methods for Relation Extraction[J]. Journal of Machine Learning Research,2003,(2): 1083-1106.
[5] Culotta A,Sorensen J. Dependency tree kernels for relation extraction[C]//ACL, 2004: 423-429.
[6] Bunescu R. C. and Mooney R. J. 2005. A Shortest Path Dependency Kernel for Relation Extraction[J].EMNLP-2005: 724-731.
[7] Zhang M,Zhang J,Su J, et al. A Composite Kernel to Extract Relations between Entities with both Flat and Structured Features[C]//ACL,2006: 825-832.
[8] Kambhatla N. Combining lexical, syntactic and semantic features with Maximum Entropy models for extracting relations[C]//ACL(poster),2004: 178-181.
[9] Zhao S B,Grishman R. Extracting relations with integrated information using kernel methods[C]//ACL,2005: 419-426.
[10] Zhou G D,Su J, Zhang J,Zhang M. Exploring various knowledge in relation extraction[C]//ACL,2005: 427-434.
[11] Charniak, Eugene. Intermediate-head Parsing for Language Models[C]//ACL,2001: 116-123.
[12] Moschitti A. A study on Convolution Kernels for Shallow Semantic Parsing[C]//ACL,2004.

基金

国家863高技术研究发展计划资助项目(2006AA01Z147);国家自然科学基金资助项目(60673041)
PDF(455 KB)

1016

Accesses

0

Citation

Detail

段落导航
相关文章

/