基于语法分析和统计方法的答案排序模型

李波,高文君,邱锡鹏

PDF(390 KB)
PDF(390 KB)
中文信息学报 ›› 2009, Vol. 23 ›› Issue (2) : 23-27.
综述

基于语法分析和统计方法的答案排序模型

  • 李波,高文君,邱锡鹏
作者信息 +

Constructing an Answer Ranking Model Using Semantic Analysis and Statistical Method for Question Answering

  • LI Bo, GAO Wen-jun, QIU Xi-peng
Author information +
History +

摘要

该文描述了一种构建问答式检索系统中答案排序模型的新方法。该方法结合了基于密度方法的度量特征和外部知识库,并且引入了基于语法分析方法的语法关键路径的新特征,使用支持向量机回归模型训练评估函数。实验证明,引入了上述语法关键路径特征后的新答案排序模型的排序性能有了明显提高。

Abstract

This paper describes a new method to construct the answer ranking model for Question Answering System. The method leverages knowledge density-based features used in answer ranking and introduces a new feature--syntactic path--by using parsing analysis and establishes an evaluation function by using supporting vector machine regression model. The experiments show that the new model which involves the syntactic path feature achieves substantial improvements.

关键词

计算机应用 / 中文信息处理 / 自动问题回答 / 语法关键路径 / 答案排序 / 支持向量机

Key words

computer application / Chinese information processing / question answering / syntactic path / answer ranking / Support Vector Machine

引用本文

导出引用
李波,高文君,邱锡鹏. 基于语法分析和统计方法的答案排序模型. 中文信息学报. 2009, 23(2): 23-27
LI Bo, GAO Wen-jun, QIU Xi-peng. Constructing an Answer Ranking Model Using Semantic Analysis and Statistical Method for Question Answering. Journal of Chinese Information Processing. 2009, 23(2): 23-27

参考文献

[1] E.M. Voorhees. Overview of the TREC 2007 Question Answering Track[C]//TREC 2007.
[2] T Zesch, I Gurevych, M Mühlhuser, Analyzing and Accessing Wikipedia as a Lexical Semantic Resource[C]//Data Structures for Linguistic Resources and Applicationspp. 197-205, Gunter Narr, Tübingen, 2007.
[3] D.Bollegala, Y Matsuo, M Ishizuka, Measuring Semantic Similarity between Words Using Web Search Engines[C]//WWW 2007.
[4] C.Kwok, O.Etzioni, and D.Weld. Scaling question answering to the web[J]. 2001. ACM Transactions on Information Systems, 2001, 19:242-262.
[5] R. Sun, H. Cui, K. Li, T.-S. Chua, and M.Y. Kan. Dependency Relation Matching for Answer Selection[C]//Proc.of SIGIR 2005, Salvador, Brazil.
[6] Feng Lin, Yaqian Zhou, Xuanjing Huang, Lide Wu, Dependency Relation Triples Matching for Answer Ranking[C]//Chinese National Conference on Computational Linguistics, 2007.
[7] L Wu, X Huang, Y Zhou. FDUQA on TREC2003 QA Track[C]//TREC 2003.
[8] X. Qiu, B. Li, C. Shen, L. Wu, X. Huang, and Y. Zhou. FDUOA on TREC 2007 QA Track[C]//TREC, 2007.
[9] D Lin, Dependency-based evaluation of MINIPAR[C]//Workshop on the Evaluation of Parsing Systems, 1998.
[10] SR Gunn. Support Vector Machines for Classification and Regression[R]. ISIS Technical Report, 1998.
[11] CC Chang, CJ Lin. LIBSVM: a library for support vector machines[DB/02]. 2001.
[12] G.Miller. Wordnet: An electronic Lexical Database[DB/02]. MIT Press, 1998.

基金

国家自然科学基金资助项目(60435020)
PDF(390 KB)

Accesses

Citation

Detail

段落导航
相关文章

/