基于SVM融合多特征的介词结构自动识别

温苗苗,吴云芳

PDF(658 KB)
PDF(658 KB)
中文信息学报 ›› 2009, Vol. 23 ›› Issue (5) : 19-25.
综述

基于SVM融合多特征的介词结构自动识别

  • 温苗苗,吴云芳
作者信息 +

Feature-rich Prepositional Phrase Boundary Identification based on SVM

  • WEN Miaomiao, WU Yunfang
Author information +
History +

摘要

介词结构在汉语文本中出现频率很高,正确识别介词结构边界对句法分析、语音合成中的韵律短语划分有着重要意义。该文较为系统地探讨了汉语中常用介词的边界识别问题。利用支持向量机SVM模型,基于输出概率而不是简单的二分法来选择正确的后边界。探讨了不同的特征选择,并尝试加入语义信息等不同特征组合以提高识别准确率。对常用的68个介词进行边界识别实验,5折交叉验证的准确率达到90.95%,优于前人的识别结果。

Abstract

Owing to the high frequency of prepositional structure, this paper systematically explores the prepositional phrase boundary identification, which plays an important role in Chinese parsing, as well as for some application systems such as text to speech system. We apply support vector machine model to identify phrase boundary, and the boundary word is selected based on the output probability rather than the binary classification results. We also investigate different kinds of features, and try to employ rich features such as semantic classes involved. Together 68 frequently used prepositions are experimented in our test and the results show it achieves a precision of 90.95% in a five-fold cross validation.
Key words computer application; Chinese information processing; prepositional phrase identification; SVM; semantic class

关键词

计算机应用 / 中文信息处理 / 介词结构识别 / 支持向量机 / 语义类

Key words

computer application / Chinese information processing / prepositional phrase identification / SVM / semantic class

引用本文

导出引用
温苗苗,吴云芳. 基于SVM融合多特征的介词结构自动识别. 中文信息学报. 2009, 23(5): 19-25
WEN Miaomiao, WU Yunfang. Feature-rich Prepositional Phrase Boundary Identification based on SVM. Journal of Chinese Information Processing. 2009, 23(5): 19-25

参考文献

[1] Eneko Agirre, Timothy Baldwin, David Martinez. Improving Parsing and PP attachment Performance with Sense Information [C]// Proceedings of ACL 08. 2008: 317-325.
[2] 干俊伟,黄德根.汉语介词短语的自动识别[J]. 中文信息学报,2004,19(4):17-23.
[3] 奚建清,罗强.基于HMM的汉语介词短语自动识别研究[J].计算机工程,2007,33(3):172-182.
[4] 王立霞,孙宏林. 现代汉语介词短语边界识别研究[J].中文信息学报,2005, 19(3):80-86.
[5] 李珩,朱靖波,姚天顺. 基于SVM的中文组块分析[J]. 中文信息学报, 2004, 18(2):1-7.
[6] 黄德根,王莹莹.基于SVM到组块识别及其错误驱动学习方法[J].中文信息学报,2005,20(6):17-24.
[7] 俞士汶,段慧明,朱学锋,等. 北大语料库加工规范: 切分、词性标注、注音[J].汉语语言与计算学报, 2003.13(2): 121-158.



基金

国家863高技术研究发展计划基金项目(2007AA01Z198);国家自然科学基金项目(60703063);国家社会科学基金项目(08CYY016);国家973重点基础研究发展规划基金项目(2004CB318102)
PDF(658 KB)

Accesses

Citation

Detail

段落导航
相关文章

/