该文提出了一种基于树核的英文代词消解方法。针对结构化信息在指代消解中的重要作用,该文使用SVM提供的卷积树核函数自动获取句法结构信息,将句法树作为一个特征,和其他基本特征相结合。该文系统的分析了训练用例的过滤及不同的剪枝策略对模型性能的影响,同时还分析了树核函数对于几句之内的代词消解有比较好的结果。在ACE2004 NWIRE基准数据上进行实验的结果说明树核能显著地提高代词消解系统的性能,并且对一句之内的代词消解有较好的效果。
Abstract
This paper proposes a tree kernel-based approach to anaphora resolution of English pronoun. In our method, the convolution kernel of SVM is first used to obtain structured information, and then such achieved feature of the syntax is combined with other basic features in the literature. A system analysis of the impact of the filtering of training instances and different pruning strategies on the results is conducted. Further examination on the pronoun resolution performances in regard to the sentence distances is also carried out. Evaluation on the ACE2004 NWIRE benchmark corpus shows that tree kernel can improve the performance significantly, especially for the pronoun resolution within a sentence.
Key words computer application; Chinese information processing; coreference resolution; structured syntax; tree kernel; pruning strategy
关键词
计算机应用 /
中文信息处理 /
指代消解 /
句法结构 /
树核函数 /
修剪策略
{{custom_keyword}} /
Key words
computer application /
Chinese information processing /
coreference resolution /
structured syntax /
tree kernel /
pruning strategy
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王厚峰. 指代消解的基本方法和实现技术[J]. 中文信息学报, 2002,16(6): 9-17.
[2] Wee. Meng Soon, Hwee Tou Ng and Daniel Chung Yong lim. A machine learning approach to coreference resolution of noun phrase[J].Computational Linguistics, 2001,27(4):521-544.
[3] Vincent Ng and Claire Cardie. Improving machine learning approaches to coreference resolution[C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, 2002.
[4] J. Hobbs. Resolving pronoun references[J]. Lingua, 1978. 44:339-352
[5] S. Lappin and H. Leass. An algorithm for pronominal anaphora resolution[J]. Computational Linguistics, 1994. 20(4):525-561.
[6] D Zelenko, C Aone, A Richardella. Kernel Methods for Relation Extraction[J]. Journal of MachineLearning Research. 2003(2): 1083-1106.
[7] M Zhang, J Zhang, J Su, G Zhou. A Composite Kernel to Extract Relations between Entities with both Flat and Structured Features. Sydney[C]//ACL’2006: 825-832.
[8] Yang Xiao.Feng., Su J. and Tan C.L. 2006, Kernel-Based Pronoun Resolution with Structured Syntactic Knowledge[C]//ACL’ 2006:41-48, Sydney,July 2006.
[9] M Collins, N Duffy.Convolution Kernels for Natural Language [C]//NIPS ,2002.
[10] M Collins, N Duffy. New Ranking Algorithm for Parsing and Tagging: Kernel over Discrete Structure, and the Voted Perceptron [C]//Proceeding of ACL,2002.
[11] Charniak. A maximum-entropy-inspired paser[C]//Proceedings of North American Chapter of the Association for Computational Linguistics annual meeting, 2000: 132-139.
[12] Grosz, A. JoShi, and S. Weinstein. Providing a unified account of definite noun phrases in discourse[C]//Proceedings of the 21st Annual meeting of the Association for Computational Linguistics, 1983: 44-45.
[13] Grosz, A. JoShi and S. Weinstein. 1995. Centering: a framework for modeling the local coherence of discourse[J]. Computational Linguistics, 21(2):203-225.
[14] Ng, V. (2007). Shallow semantics for coreference resolution[C]//IJCAI 2007: 1689-1694.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(60673041);国家863高技术资助项目(2006AA01Z147)
{{custom_fund}}