甲骨拓片字形图像复原方法

顾绍通1,2,3

PDF(1449 KB)
PDF(1449 KB)
中文信息学报 ›› 2010, Vol. 24 ›› Issue (2) : 116-122.
综述

甲骨拓片字形图像复原方法

  • 顾绍通1,2,3
作者信息 +

Character Image Restoration Algorithm of Jiagu Rubbings

  • GU Shaotong1,2,3
Author information +
History +

摘要

提出了一种基于自适应阈值和分形几何的甲骨拓片字形图像复原方法。文章分析了甲骨拓片噪声的特点以及字形图像边缘的分形特征,通过计算自适应阈值对噪声区域进行填充。采用统计的方法计算甲骨拓片字形图像边缘的分形维数特征,对字形图像边缘进行压缩变换,进而对甲骨拓片字形图像边缘进行平滑。实验结果显示,这一方法的图像复原效果是比较明显的。

Abstract

A character image restoration of Jiagu rubbings method based on adaptive threshold and fractal geometry is proposed in this paper. The paper analyzes the characteristics of the image noise and the edges of the characters on Jiagu rubbings. Firstly, we estimate the adaptive threshold by means of Bayes risk function and clear the noise regions. Then we calculate the fractal dimension of the character edge on Jiagu rubbings by means of statistics. Finally, we perform the transformation to the character edges so as to smooth the character edges of Jiagu rubbings image. The experimental results show that the proposed method could smooth the character edge of Jiagu rubbings significantly.
Key wordscomputer application; Chinese information processing;Jiagu rubbings; adaptive threshold; fractal geometry; fractal dimension; compression transformation; character image restoration

关键词

计算机应用 / 中文信息处理 / 甲骨拓片 / 自适应阈值 / 统计分形 / 分形维数 / 压缩变换 / 字形图像复原

Key words

computer application / Chinese information processing / Jiagu rubbings / adaptive threshold / fractal geometry / fractal dimension / compression transformation / character image restoration

引用本文

导出引用
顾绍通1,2,3. 甲骨拓片字形图像复原方法. 中文信息学报. 2010, 24(2): 116-122
GU Shaotong1,2,3. Character Image Restoration Algorithm of Jiagu Rubbings. Journal of Chinese Information Processing. 2010, 24(2): 116-122

参考文献

[1] 顾绍通,马小虎,杨亦鸣.基于字形拓扑结构的甲骨文输入编码研究[J].中文信息学报,2008,22(4):123-128.
[2] M. Bertalmio, G. Sapiro, V. Caselles, et al. Image inpainting[C]//Proceedings of SIGGRAPH 2000. New Orleans, USA, 2000: 417-424.
[3] M. Bertalmio, A. L. Bertozzi, G. Sapiro, et al. Navier-stokes, fluid dynamics, and image and video inpainting[C]//Proceedings of the International Conference on Computer Visionand Pattern Recognition, Kauai, HI, 2001, I, 355-362.
[4] T. Chan, J. Shen. Mathematical Models for Local Deterministic Inpaintings[P]. TR00-11, Department of Mathematics, University of California-Los Angeles, Los Angeles, Califormia, USA, 2000.
[5] T. Chan, J. Shen. Non-Texture Inpainting by Curvature-Driven Diffusions[P]. TR00-35. Department of Mathematics, University of California-Los Angeles, Los Angeles, Califormia, USA, 2000.
[6] M. Oliveira, B. Bowen, R. McKenna, et al. Fast digital image inpainting[C]//Proceedings of the Visualization, Imaging, and Image Processing IASTED Conference. Marbella, Spain, 2001:261-266.
[7] J. C. Carr, R. K. Beatson, J. B. Cherrie, et al. Reconstruction and representation of 3D objects with radial basis functions[C]//Proceedings of ACM SIGGRAPH 2001, Los Angeles, California, USA, 2001:67-76.
[8] J. C. Carr, W. R. Fright. Beatson R K.. Surface interpolation with radial basis functions for medical imaging[J]. IEEE Transactions on Medical Imaging, 1997,16(1):96-107.
[9] S. Esedoglu and J. Shen. Digital inpainting based on the Mumford-Shah-Euler image model[J]. Eur. J. Appl. Math., 2002,13(4): 353-370.
[10] A. Criminisi, P. Perez, K. Toyama. Object removal by exemplar-based inpainting[C]//Proceedings of 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison, Wisconsin, 2003, 2: 721-728.
[11] M. Elad, J. L. Starck, P. Querre, and D. L. Donoho. Simultaneous cartoon texture image inpaitning using morphological component analysis[J].Appl. Comput. Harmon. Anal., 2005, 19(3): 340-358.
[12] A. Bertozzi, S. Esedoglu, and A. Gillette. Inpainting of binary image using the Cahn-Hilliard equation[J]. IEEE Transactions on Image Processing, January 2007, 16(1): 285-291.
[13] J. A. Guerrero-Colón, L. Mancera, and J. Portilla. Image restoration using space-variant Gaussian scale mixture in overcomplete pyramids[J]. IEEE Transactions on Image Processing, January 2008, 17(1):27-41.
[14] Philippe Henri Gosselin and Matthieu Cord. Active Learning Methods for Interactive Image Retrieval[J]. IEEE Transactions on Image Processing, July 2008, 17(7):1200-1211.
[15] Julia A. Dobrosotskaya and Andrea L. Bertozzi. A Wavelet-Laplace Variational Technique For Image Deconvolution and Inpainting[J]. IEEE Transactions on Image Processing, May, 2008, 17(5):657-663.
[16] 唐松,郭椿标,郑南宁.基于文字结构特征的快速平滑细化方法[J].中文信息学报,1990,4(2):49-54.
[17] 马小虎,黄文帆,顾绍通,杨亦鸣.甲骨文点阵字形转换为甲骨文轮廓字形的方法[J].语言科学,2004,3(3):3-11.
[18] B. B. Mandelbrot. Fractals: Form, Chance and Dimension[M]. San Francisco: W. H. Freeman & Co., 1977.
[19] A. P. Pentland. Fractal-Based Description of Natural Scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(6): 661-674.
[20] Chaudhuribb, N. Sarkar, Texture segmentation using fractal dimension[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, vol. 17(1):72-77.
[21] J. Gangepain, C. Roques-Carmes. Fractal approach to two dimensional and three dimensional surface roughness, Wear, 1986,109(1-4): 119-126.
[22] N. Sarkar, Chaudhuribb. An efficient differential box-counting approach to compute fractal dimension of image[J]. IEEE Transactions on System Man and Cybernet. 1994, 24(1): 115-120.
[23] N. Sarkar, Chaudhuribb. An efficient approach to estimate fractal dimension of texture images[J]. Pattern Recognition, 1992, 25(9): 1035-1041.

基金

国家自然科学基金资助项目(30740040);江苏省“333高层次人才培养工程”科研项目;江苏省社会科学基金项目(09YYB011);徐州师范大学人文社会科学研究基金重点资助项目(08XWA04)
PDF(1449 KB)

Accesses

Citation

Detail

段落导航
相关文章

/