随着网络信息量的日益增加,为用户提供个性化服务是一种趋势。该文通过建立一个通用的服务本体模型,将项目集合划分到多个服务子类中,经过概率计算得到用户的兴趣分布,并在此基础上提出了一个结合内容过滤和项目协同过滤的个性化混合服务推荐模型(OHR)。实验结果表明了该模型在服务推荐上具有较高的准确率和发现用户新兴趣的能力。
Abstract
With the dramatic increase of information available on the Internet, it is obviously a trend to provide users with personalized service. In this paper, through building a generalized service model based on ontology, the Items are classified into service sub-category. and the probability distribution of the users′ interests are calculated. On the basis of the combination of Content Filtering and Item-based Collaborative Filtering, an new ontology-based hybrid personalized recommendation model(OHR) is put forward. The experimental results show that OHR provides the better recommendation results than traditional collaborative filtering algorithms, as well as the better ability to discover the users′ new interests.
Key wordscomputer application; Chinese information processing;ontology; hybrid personalized recommendations; item-based collaborative filtering; probabilistic model
关键词
计算机应用 /
中文信息处理 /
服务本体 /
混合个性化服务推荐模型 /
项目协同过滤 /
概率计算
{{custom_keyword}} /
Key words
computer application /
Chinese information processing /
ontology /
hybrid personalized recommendations /
item-based collaborative filtering /
probabilistic model
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009, 20(2):350-362.
[2] Gediminas Adomavicius, Alexander Tuzhilin, Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions[C]//IEEE Transactions on Knowledge and Data Engineering, 2005,17(6):734-749.
[3] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, Item-Based Collaborative Filtering Recommendation Algorithms[C]//Proc.10th Int’l WWW Conf., 2001.
[4] Mukund Ddeshpande,George Karypis,Item-Based Top-N Recommendation Algorithms[J].ACM Transactions on Information Systems, 2004, 22(1):143-177.
[5] K. Yu, A. Schwaighofer, V. Tresp, X. Xu, and H.-P. Kriegel, Probabilistic Memory-Based Collaborative Filtering[J]. IEEE Trans .Knowledge and Data Eng., 2004,16(1):56-69.
[6] Z. Huang, H. Chen, and D. Zeng, Applying Associative Retrieval Techniques to Alleviate the Sparsity Problem in Collaborative Filtering[J]. ACM Trans. Information Systems, 2004,22(1):116-142.
[7] 王明文,陶红亮,熊小勇.双向聚类迭代的协同过滤推荐算法[J].中文信息学报,2008,22(4):61-65.
[8] 宗胜,姜丽红. 推荐系统中遗漏值解决方法的研究[J].计算机应用与软件,2008,(6)
[9] 戴亚娥,龚松杰.个性化服务中基于模糊聚类的协同过滤推荐[J].计算机工程与科学,2009,(4)
[10] 罗喜军,王韬丞,杜小勇,刘红岩,何军. 基于类别的推荐-种解决协同推荐中冷启动问题的方法.计算机研究与发展,2007,z3.
[11] 欧洁.基于贝叶斯网络模型的用户兴趣联合推送[J].计算机科学 2003,30(12):73-77.
[12] Balabanovic, M., Shoham, Y. Fab: content-based, collaborative recommendation[J]. Communications of the ACM, 1997,40(3):66-72.
[13] Jun Wang, Arjen P. de Vries, Marcel J.T. Reinders, Unifying User-based and Item-based Collaborative Filtering Approaches by Similarity Fusion[C]//Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval Pages: 501-508.
[14] Rong Hu, Yansheng Lu, A Hybrid User and Item-Based Collaborative Filtering with Smoothing on Sparse Data[C]//16th International Conference on Artificial Reality and Telexistence——Workshops (ICAT’06),2006: 184-189.
[15] James Salter, Nick Antonopoulos, CinemaScreen Recommender Agent: Combining Collaborative and Content-Based Filtering[C]//IEEE Intelligent Systems, 2006, 21(1):35-41.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家863计划重点资助项目(2009AA011900)
{{custom_fund}}