中文交互式问答用户问题相关检测研究

伍大勇,张 宇,刘 挺

PDF(840 KB)
PDF(840 KB)
中文信息学报 ›› 2010, Vol. 24 ›› Issue (3) : 11-19.
综述

中文交互式问答用户问题相关检测研究

  • 伍大勇,张 宇,刘 挺
作者信息 +

Research on Relevance Recognition of Question for
Interactive Question Answering

  • WU Dayong, ZHANG Yu,LIU Ting
Author information +
History +

摘要

交互式问答是具备处理系列相关问题以及与用户进行对话式交互的问答技术,是近年来国际上问答技术研究的一个热门方向,但是目前在中文问答领域几乎没有开展相关的研究。实现交互式问答系统首先要判别用户系列问题之间的相关性。该文探讨了提取问题中不同特征对中文交互式问答问题相关检测的作用,并且根据识别出的有效特征采用基于二元分类方法分别对翻译成中文的TREC QA问题集语料和真实的交互式问答语料进行问题相关检测实验,实验结果显示该文的方法获得了较好的问题相关检测效果。

Abstract

Interactive question answering (IQA) is a kind of QA technology that is able to process a series of coherent questions and interact with users by the means of dialogue, Being a hot research topic in the area of QA, though. IQA is less touched in Chinese to our knowledge. An important problem in a typical IQA system is the relevance recognition among a series of questions. This paper analyzes the effectiveness of different features extracted from questions on relevance recognition of question in Chinese IQA. Based on the key features detected, we experiment the Binary Classification model on the TREC QA task question set that was translated to Chinese, as well as a real IQA question set. Experimental results show that the proposed method is effective.
Key wordscomputer application; Chinese information processing;interactive question answering; question; relevance recognition; binary classification

关键词

计算机应用 / 中文信息处理 / 交互式问答 / 问题 / 相关检测 / 二元分类

Key words

computer application / Chinese information processing / interactive question answering / question / relevance recognition / binary classification

引用本文

导出引用
伍大勇,张 宇,刘 挺. 中文交互式问答用户问题相关检测研究. 中文信息学报. 2010, 24(3): 11-19
WU Dayong, ZHANG Yu,LIU Ting. Research on Relevance Recognition of Question for
Interactive Question Answering. Journal of Chinese Information Processing. 2010, 24(3): 11-19

参考文献

[1] Maybury, M. T. Towards a question answering roadmap[R]. Tech. rept. MITRE Corporation. 2002.
[2] Nick Webb, Introduction of Interactive Question Answering Workshop[C]//Proceedings of the Interactive Question Answering Workshop at HLT-NAACL 2006. New York City, NY, USA, 2006.
[3] Ellen M. Voorhees. Overview of the TREC 2004 Question Answering Track[EB/OL]. http://trec.nist.gov/.
[4] Marco De Boni, Suresh Manandhar. Implementing clarification dialogues in open domain question answering[J]. Natural Language Engineering. 2005,11(4): 343-361.
[5] Fan Yang., Junlan Feng, Giuseppe Di Fabbrizio. a Data driven Approach to relevancy recognition for contextual question answering[C]//Proceedings of the Interactive Question Answering Workshop at HLT-NAACL 2006. New York City, NY, USA, 2006: 33-40.
[6] Christiane Fellbaum. WordNet:An Electronic Lexical Database[M]. MIT Press, Cambridge, MA. 1998.
[7] 董强, 董振东. 意义计算的实现[EB/OL]. http://www.keenage.com/html/e_index.html. 2008.
[8] 语言技术平台LTP[CP/OL]. http://ir.hit.edu.cn/.
[9] Ian H.Witten, Eibe Frank. Data Mining Practical Machine Learning Tools and Techniques[M]. Second Edition. Morgan Kaufmann publishers. 2005.
[10] Van Schooten, Boris and Rieks op den Akker. 2005. Follow-up utterances in QA dialogue[J]. Traitement Automatique des Langues, 46(3):181-206.

基金

国家自然科学基金重点项目资助(60736044);国家自然科学基金面上项目资助(60675034);国家863计划探索类专题项目资助(2008AA01Z144)
PDF(840 KB)

597

Accesses

0

Citation

Detail

段落导航
相关文章

/