基于检索历史上下文的个性化查询重构技术研究

宋 巍,张 宇,刘 挺,李 生

PDF(852 KB)
PDF(852 KB)
中文信息学报 ›› 2010, Vol. 24 ›› Issue (3) : 55-62.
综述

基于检索历史上下文的个性化查询重构技术研究

  • 宋 巍,张 宇,刘 挺,李 生
作者信息 +

Personalized Query Reformulation Based on Search Context

  • SONG Wei, ZHANG Yu, LIU Ting, LI Sheng
Author information +
History +

摘要

基于检索历史隐式地学习用户偏好是个性化检索研究的热点,而根据用户检索历史重构新的查询输入是其中主要的研究内容。已有的研究在利用检索历史进行查询重构时,通常不区分检索历史中的内容是否与当前查询相关,而是将全部检索历史视为整体,因而使重构后的查询含有较多噪声。该文基于相关词语在上下文中大量共现的特征,将用户历史检索结果的网页摘要作为上下文语境,结合用户点击,选择检索历史中与当前查询共现程度最高的词语重构查询模型。对初始检索结果重排序的实验表明,该方法可以有效地选择相关词语,减少噪声。用p@5和NDCG两种指标评价,比最好的基准系统分别相对提高12.8%和7.2%,比初始排序结果相对提高 26.0% 和11.4%。

Abstract

Learning user preference implicitly is a hot research topic for personalized search ,and query model reformulation based on user search history is a key issue. Existing work considers the search history as a whole without distinguishing whether it is relevant to current query, resulting in much noise. In this paper, assuming that the relevant terms tend to co-occurrence in context, we treat each past snippet as a context and reformulate the query by selecting the most relevant terms to the whole query from the user clicks. The experiment results show that the algorithm can select relevant terms and reduce noise. With the evaluation metrics of p@5 and NDCG, the system achieves a relative improvement against the best baseline system by 12.8 % and 7.2% respectively, 26.0% and 11.4% against the original ranking.
Key wordscomputer application; Chinese information processing; personalized web search; implicit feedback; query reformulation

关键词

计算机应用 / 中文信息处理 / 个性化检索 / 隐式反馈 / 查询重构

Key words

computer application / Chinese information processing / personalized web search / implicit feedback / query reformulation

引用本文

导出引用
宋 巍,张 宇,刘 挺,李 生. 基于检索历史上下文的个性化查询重构技术研究. 中文信息学报. 2010, 24(3): 55-62
SONG Wei, ZHANG Yu, LIU Ting, LI Sheng. Personalized Query Reformulation Based on Search Context. Journal of Chinese Information Processing. 2010, 24(3): 55-62

参考文献

[1] 曾春, 邢春晓, 周立柱.个性化服务技术综述[J].软件学报,2002,13(10):1952-1961.
[2] Nicholas J.Belkin. Some (what) challenges and grand challenges for information retrieval[J]. ACM SIGIR Forum, 2008,42(1): 47-54.
[3] Jing Bai, Jian-Yun Nie, Guihong Cao, Hugues Bouchard. Using query contexts in information retrieval[C]//Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval. 2007: 15-22.
[4] Xuehua Shen, Bin Tan, ChengXiang, Zhai. Implicit user modeling for personalized search[C]//Proceedings of the 14th ACM international conference on Information and knowledge management. 2005: 824-831.
[5] Yuanhua Lv, Le Sun, Junlin Zhang, Jian-Yun Nie Wan Chen, Wei Zhang. An iterative implicit feedback approach to personalized search[C]//Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting of the Association for Computational Linguistics. 2006: 585-592 .
[6] Sugiyama K, Hatano K,K Yoshikawa M. Adaptive web search based on user profile constructed without any effort from users[C]//Proceedings of the 13th international conference on World Wide Web. 2003: 675-684
[7] Susan Gauch, Jason Chaffee, Alaxander Pretschner. Ontology-based personalized search and browsing[J]. Web Intelligence and Agent Systems. 2003, 1(3-4): 219-234
[8] Teevan, J., Dumais, S. T., & Horvitz, E. (2005). Personalizing search via automated analysis of interests and activites[C]//Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, 2005: 449-456.
[9] Bin Tan, Xuehua Shen, ChengXiang Zhai. Mining long-term search history to improve search accuracy[C]//Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, 2006: 718-723
[10] Lavrenko, V. and Croft, W.B. Relevance-based language models[C]//Proc. 24th ACM SIGIR Conf. On Research and Development in Information Retrieval. 2001: 120-127.
[11] Jinxi Xu, W. Bruce Croft. Improving the effectiveness of information retrieval with local context analysis[J]. ACM Transactions on Information Systems (TOIS). 2000, 18(1): 79-112.
[12] Paul Alexandru Chirita, Claudiu S. Firan, Wolfgang Nejdl. Personalized query expansion for the web[C]//Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, 2007: 7-14.
[13] 梅翔, 陈俊亮, 徐萌. 一种基于偏好的查询扩展方法[J]. 高技术通讯, 2007,17: 1142-1146.
[14] 张宇, 范基礼, 郑伟, 邹博伟, 刘挺. 基于人工标注的个性化检索系统评测的研究[J]. 中文信息学报, 2009, 23(2): 62-53.
[15] Kalervo Jrvelin, Jaana Keklinen. IR evaluation methods for retrieving highly relevant documents[C]//Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval, 2000: 41-48.

基金

国家自然科学基金重点资助项目(60736044);国家自然科学基金面上资助项目(60675034);国家863计划探索类专题资助项目(2008AA01Z144);语言语音教育部—微软重点实验室开放基金资助(HTT.KLOF.2009020)
PDF(852 KB)

484

Accesses

0

Citation

Detail

段落导航
相关文章

/