基于树核函数的“it”待消解项识别研究

陈九昌,孔 芳,朱巧明,周国栋

PDF(742 KB)
PDF(742 KB)
中文信息学报 ›› 2010, Vol. 24 ›› Issue (5) : 24-31.
综述

基于树核函数的“it”待消解项识别研究

  • 陈九昌,孔 芳,朱巧明,周国栋
作者信息 +

Detection of Referential It
in Coreference Resolution Based on Tree Kernel

  • CHEN Jiuchang, KONG Fang, ZHU Qiaoming, ZHOU Guodong
Author information +
History +

摘要

该文在基于特征的英文代词指代消解平台上,使用复合核函数,研究指代消解中待消解项“it”的识别问题。围绕“it”是否是待消解项,该文采取有效策略获得“it”句法结构信息与平面特征信息,并将它们结合起来生成“it”待消解项分类器。在测试分类器性能的同时,将其运用到代词指代消解中以检验它对指代消解的作用。最后在ACE2003基准语料上实验表明采用复合核生成的分类器具有较高的准确率,并能显著提高代词指代消解性能。

Abstract

This paper presents an automatic approach using Composite Kernel of SVM to determining whether “it” in text refers to a preceding noun phrase or is instead non-referential in the platform of feature-based English pronoun coreference resolution. We extract structure information and plane feature information about "it" in order to construct an anaphoricity filter. We examine the performance of the filter by introducing it into the pronoun coreference resolution task. Evaluation on the ACE2003 benchmark corpus shows that the filter achieves the highest performance by using Composite Kernel and the pronoun coreference resolution is improved by employing the filter.
Key wordsanaphoricity determination; composite kernel; coreference resolution

关键词

待消解项识别 / 复合核 / 指代消解

Key words

anaphoricity determination / composite kernel / coreference resolution

引用本文

导出引用
陈九昌,孔 芳,朱巧明,周国栋. 基于树核函数的“it”待消解项识别研究. 中文信息学报. 2010, 24(5): 24-31
CHEN Jiuchang, KONG Fang, ZHU Qiaoming, ZHOU Guodong. Detection of Referential It
in Coreference Resolution Based on Tree Kernel. Journal of Chinese Information Processing. 2010, 24(5): 24-31

参考文献

[1] Veselin Stoyanov, Nathan Gilbert, Claire Cardie and Ellen Riloff. Conundrums in Noun Phrase Coreference Resolution: Making Sense of the State-of-the-Art[C]//ACL’2009: 656-664.
[2] Richard Evans. Applying Machine Learning Toward an Automatic Classification of It[C]//Literary and Linguistic Computing, 2001, 16(1): 45-57.
[3] J. Hobbs. 1978. Resolving pronoun references [J]. Lingua, 44:339-352
[4] Lappin S., Herbert J.L. An algorithm for pronominal anaphora resolution [J]. Computational Linguistics, 1994, 20(4): 535-561.
[5] Bergsma S., Lin D. and Goebel R. Distributional Identification of Non-referential Pronouns[C]//ACL’2008:10-18.
[6] Ng V. and Cardie C.Identify Anaphoric and Non-Anaphoric Noun Phrases to Improve Coreference Resolution[C]//COLING’2002.
[7] 王海东. 基于树核函数的英文代词消解研究[J]. 中文信息学报, 2009, 23(5):33-39.
[8] Zhou G.D. and Kong F. Global Learning of Noun Phrase Anaphoricity in Coreference Resolution via Label Propagetion[C]//EMNLP’2009: 978-986.
[9] Yang X.F., Su J. and Tan C.L. Kernel-Based Pronoun Resolution with Structured Syntactic Knowledge[C]//ACL’2006:41-48.
[10] Soon W.M., Ng H.T. and Lim D.A machine learning approach to coreference resolution of noun phrase[J]. Computational Linguistics,2001,27(4):521-544.
[11] Kong F., Zhou G.D. and Zhu Q.M. Employing the Centering Theory in Pronoun Resolution from the Semantic Perspective[C]//EMNLP’2009: 987-996
[12] Christoph Muller. Automatic detection of non-referential It in spoken multi-party dialog[C]//EACL’2006:49-56.
[13] Zhou G.D. and Su J. A high- performance coreference resolution system using a multi- agent strategy[C]//COLING’ 2004: 522- 528.
[14] Collins M. Head-driven statistical models for natural language parsing [D]. Ph.D. Thesis, the University of Pennsylvania. 1999.
[15] 王厚峰. 指代消解的基本方法和实现技术[J]. 中文信息学报, 2002, 16(6):9-17.
[16] 王晓龙,关毅,等. 计算机自然语言处理[M]. 北京:清华大学出版社,2005.

基金

国家自然科学基金资助项目(60673041);高等学校博士学科点专项科研基金资助项目(200802850006);江苏省高校自然科学重大基础研究项目(08KJA520002);江苏省高校自然科学基础研究项目(08KJD520010);苏州市软件专项资助项目(SGR0807)
PDF(742 KB)

542

Accesses

0

Citation

Detail

段落导航
相关文章

/