在微博客中,转发对信息的传播有着至关重要的影响,各种各样的信息正是通过转发得以在微博客上广泛且迅速的传播。另外在很多领域中,例如,市场营销、政治选举和热点提取等,也都需要深入探讨转发的各种特性。该文中,我们以Twitter为例,通过预测一条tweet是否会被转发,研究微博客中的转发行为。为解决这个问题,我们使用机器学习中的分类算法,并通过对微博上不同特征的重要性进行分析,提出了基于特征加权的预测模型。实验表明,我们的特征加权模型很好的解决了微博客中的转发预测问题,大约86%的微博能被成功预测。
Abstract
Retweeting is a key mechanism for information diffusion in Microbloging services such as Twitter. It is the mechanism of retweeting that leads to the fast and wide diffusion of information in Microblogs. In addition, research on the characteristics of retweeting is of vital importance for many different fields such as viral marketing, political campaigns, breaking news detection and so on. In this paper, taking Twitter as an example, we investigate the retweeting mechanism in Microblogs by predicting whether a tweet will be retweeted. We analyze the importance of different features and apply the classification method with weighted features. The experiments show that the proposed method can predict a major fraction of tweets (nearly 86%), out-performing previous researches.
Key wordstwitter; retweeting; feature-weighted model
关键词
微博客 /
转发 /
特征加权模型
{{custom_keyword}} /
Key words
twitter /
retweeting /
feature-weighted model
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] R. Lahan. The Economics of Attention[M]. University of Chicago Press, 2006.
[2] Pete Cashmore. YouTube: Why Do We Watch?[DB/OL]. http://editin.cnn.com/2009/TECH/12/17/cashmore.youtube/ index.html, 2010.
[3] J. Berger, K. L. Milkman. Social Transmission, Emotion, and the Virality of Online Content[R]. Wharton Research Paper, 2010.
[4] A. Tumasjan, T. O. Sprenger, P. G. Sandner, et al. Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment[C]//Proceedings of the 4th International AAAI Conference on Weblogs and Social Media. ICWSM10, 2010.
[5] J. Bollen, H. Mao, A. Pepe. Determining the public mood state by analysis of microblogging posts[C]//Proceedings of the Alife XII Conference MIT Press, 2010.
[6] T. Sakaki, M. Okazaki, Y. Matsuo. Earthquake Shakes Twitter Users: Real-time Event Detection by Social Sensors[C]//Proceedings of WWW10, 2010.
[7] Y. Qu, C. Huang, P. Zhang, et al. Microblogging after a Major Disaster in China: A Case Study of the Yushu Earthquake[C]//Proceedings of CSCW2011, 2011.
[8] H. Kwak, C. Lee,H. Park, et al. What is Twitter, a Social Network or a News Media[C]//Proceedings of WWW10, 2010.
[9] D. Boyd, S. Golder, G. Lotan. Tweet, tweet, retweet: Conversational aspects of retweeting on Twitter[C]//Proceedings of 43rd Hawaii International Conference on System Sciences, 2010.
[10] B. Suh, L. Hong, P. Pirolli,et al. Want to be Retweeted? Large Scale Analytics on Factors Impacting Retweet in Twitter Network[C]//Proceedings of IEEE 2nd International Conference on Social Computing (SocialCom), IEEE. 2010:177-184.
[11] M. Cha, H. Haddadi, F. Benevenuto, et al. Mea-suring User Influence in Twitter: The Million Follower Fallacy[C]//Proceedings of AAAI10, 2010.
[12] J. Weng, E-P. Lim, J. Jiang, et al. Twitterrank: Finding topic-sensitive influential twitterers[C]//Proceedings of WSDM10, 2010.[13] J. Welch, D. He, U. Schonfeld, et al. Topical Semantics of Twitter Links[C]//Proceedings of WSDM11, 2011.
[14] L. Hong, O. Dan, B. D. Davison. Predicting Popular Messages in Twitter[C]//Proceedings of WWW2011, 2011.
[15] T. R. Zaman, R. Herbrich, J. V. Gael and D. Stern. Predicting information spreading in twitter[C]//Workshop on Computational Social Science and the Wisdom of Crowds, NIP2010, 2010.
[16] S. Petrovic, M. Osborne and V. Lavrenko. RT to Win! Predicting Message Propagation in Twitter[C]//AAAI2011, 2011.
[17] 徐艳,李锦涛,王斌,等. 基于区分类别能力的高性能特征选择方法[J]. 软件学报,2008, 19(1): 82-89.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}