随着统计方法逐渐成为机器翻译研究的主流,机器翻译系统评测的分值越来越高,人们对机器翻译的信心和期望逐渐增加,社会对机器翻译应用的需求也越来越大。然而,现有的机器翻译理论和方法在系统性能上提升的空间逐渐减小,而且距离用户实际需求仍有很长的路要走。那么,面对期望、面对需求,机器翻译之路应该如何走?为此,第八届全国机器翻译研讨会对当前机器翻译研究所面临的挑战和机遇进行了深入研讨。该文详细介绍了该次研讨会六个专题的讨论情况,对机器翻译研究面临的机遇和挑战进行了认真的分析和总结。
Abstract
In recent years, statistical based methods have been dominating the research and application of machine translation (MT). Meanwhile, the higher and higher evaluation scores for MT campaigns raise people’s confidence and expectations, which results in an increasing demand for high-quality MT systems. However, on one hand, it is difficult to have a big breakthrough on the MT theories and methodology in terms of translation quality; on the other hand, current practical systems cannot fully meet users satisfaction. Where and how should we go forward? Therefore, the Eighth China Workshop on Machine Translation (CWMT) is held to carry out a comprehensive and in-depth discussion on challenges and opportunities for current MT research. This paper details the six MT sessions, analyzes and concludes the key points and important findings.
Key wordsMT theories; machine translation application; spoken translation; minority languages; machine translation evaluation
关键词
机器翻译理论 /
机器翻译应用 /
语音翻译 /
少数民族语言 /
机器翻译评测
{{custom_keyword}} /
Key words
MT theories /
machine translation application /
spoken translation /
minority languages /
machine translation evaluation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Peter F Brown, Stephen A Della Pietra, Vincent J Della Pietra, et al. The mathematics of statistical machine translation: parameter estimation[J]. Computational Linguistics. 1993, 19 (2): 263-311.
[2] Philipp Koehn, Franz Josef Och, Daniel Marcu. Statistical phrase-based translation[C]//Proceedings of HLT-NAACL. Edmonton, Canada, 2003: 48-54.
[3] Philipp Koehn, Hieu Hoang, Alexandra Birch,et al. Moses: open source toolkit for statistical machine translation[C]//Proceedings of ACL of demo and poster sessions. Prague, Czech Republic, 2007: 177-180.
[4] David Chiang. A hierarchical phrase-based model for statistical machine translation[C]//Proceedings of ACL05. Ann Arbor, MI, 2005: 263-270.
[5] Kenji Yamada, Kevin Knight. A syntax-based statistical translation model[C]//Proceedings of ACL-EACL01. Toulouse, France, 2001: 523 530.
[6] Yang Liu, Qun Liu, Shouxun Lin. Tree-to-string alignment template for statistical machine translation[C]//Proceedings of Coling-ACL. Sydney, 2006: 609-616.
[7] Andreas Zollmann, Ashish Venugopal. Syntax augmented machine translation via chart parsing[C]//Proceedings of the WMT, HLT-NAACL. New York, USA, 2006: 138-141.
[8] Min Zhang, Hongfei Jiang, Ai Ti Aw, et al. A tree-to-tree alignment-based model for statistical machine translation[C]//Proceedings of MT Summit XI. Copenhagen, Denmark, 2007: 535-542.
[9] 熊德意,刘群,林守勋. 基于句法的统计机器翻译综述[J]. 中文信息学报, 2008, 22(2): 28-39.
[10] Kishore Papineni, Salim Roukos, Todd Ward, et al. BLEU: a Method for Automatic Evaluation of Machine Translation[C]//Proceedings of the 40th ACL. Philadelphia, USA, 2002: 311-318.
[11] 徐波,史晓东,刘群,等. 2005统计机器翻译研讨班研究报告[J]. 中文信息学报, 2006, 20(5): 1-9.
[12] 赵红梅,吕雅娟,贲国生,等. 第七届全国机器翻译研讨会机器翻译评测总结[J]. 中文信息学报, 2012, 26(1):22-30.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}