基于排序学习的微博用户推荐

彭泽环,孙 乐,韩先培,石 贝

PDF(1454 KB)
PDF(1454 KB)
中文信息学报 ›› 2013, Vol. 27 ›› Issue (4) : 96-103.
综述

基于排序学习的微博用户推荐

  • 彭泽环,孙 乐,韩先培,石 贝
作者信息 +

Micro-blog User Recommendation Using Learning to Rank

  • PENG Zehuan, SUN Le, HAN Xianpei, SHI Bei
Author information +
History +

摘要

该文在分析总结影响微博用户推荐的四大类信息,包括用户的内容信息、个人信息、交互信息和社交拓扑信息的基础上,提出一个基于排序学习的微博用户推荐框架,排序学习的本质是用机器学习中的分类或回归方法解决排序问题,该框架可以综合各类信息特征进行用户推荐。实验结果表明 (1)融合多个特征综合推荐通常可以取得更好的推荐效果;(2)基于用户个人信息、交互信息、社交拓扑信息的推荐效果均好于基于用户内容的推荐效果。

Abstract

This paper summarized four types of recommendation-related user information from micro-blog systemthe user content(UC), the personal information(PI), the interaction(IA) and the social topological information(ST). Based on the four types of information, a user recommendation framework using learning-to-rank technology is built in the paper. Experiment results show(1) using several features to recommend usually get a better result than using a single feature; (2) recommendation performance based on UC, PI, IA respectively is better than that based on UC.
Key wordslearning to rank; user recommendation; micro-blog.

关键词

排序学习 / 用户推荐 / 微博

Key words

learning to rank / user recommendation / micro-blog.

引用本文

导出引用
彭泽环,孙 乐,韩先培,石 贝. 基于排序学习的微博用户推荐. 中文信息学报. 2013, 27(4): 96-103
PENG Zehuan, SUN Le, HAN Xianpei, SHI Bei. Micro-blog User Recommendation Using Learning to Rank. Journal of Chinese Information Processing. 2013, 27(4): 96-103

参考文献

[1] Zhou T, Ma H, Lyu, M., King, I. UserRec: A User Recommendation Framework in Social Tagging Systems[C]//Proceedings of the 24th AAAI Conference on Artificial Intelligence, 2010: 1486-1491.
[2] Jilin Chen, Werner Geyer, Casey Dugan. Make new friends, but keep the old: recommending people on social networking sites[C]//Proceedings of CHI11: Proceedings of the 27th international conference on human factors in computing systems ACM New York, 2009.
[3] Hiroyuki Koga, Tadahiro Taniguchi. Developing a User Recommendation Engine on Twitter Using Estimated Latent Topics[C]//Proceedings of HCI (1) 2011: 461-470.
[4] Geyer W, Dugan C, Millen D, et al. Recommending topics for self-descriptions in online user profiles[C]//Proceedings of RecSys08, 2008: 59-66.
[5] Sinha R, Swearingen K. Comparing recommendations made by online systems and friends[C]//Proceedings of DELOS-NSF Workshop on Personalization and Recommender Systems in Digital Libraries. 2001.
[6] Guy I, Zwerdling N, Carmel D, et al. Personalized recommendation of social software items based on social relations[C]//Proceedings of RecSys, 2009: 53-60.
[7] TY Liu. Learning to Rank for Information Retrieval[J]. Foundations and Trends in Information Retrieval, 2009.
[8] K Dindia and D Canary. Definitions and Theoretical Perspectives on Maintaining Relationships. Journal of Social and Personal Relationships[J], 1993, 10(2):163-173.
[9] Malone T, Grant K, Turbak F, et al. Intelligent information sharing systems[J]. Communications of the ACM , 1987, 30(5): 390-402.
[10] J Hu, B Wang, Y Liu. Personalized Tag Recommendation Using Social Contacts[C]//Proceedings of SRS Workshops, 2011.
[11] Ralf Herbrich,Thore Graepel, and Klaus Obermayer. Large Margin rank boundaries for ordinal regression[J]. MIT Press, Cambridge, MA, 2000.
PDF(1454 KB)

Accesses

Citation

Detail

段落导航
相关文章

/