提高突发事件应对的关键在于快速地收集和提取相关新闻报道中的有用信息,共指消解是信息提取研究的重要子任务。该文采用最大熵模型对汉语突发事件新闻报道中的共指现象进行消解,综合对比了语义类特征、语义角色特征,以及基于维基百科的语义相关特征,重定向特征及上下文特征在测试集上的效果。实验结果表明,除单纯使用语义角色特征会使系统F值下降1.31%以外,其余各种语义知识对共指消解模型的结果均有所提高。
Abstract
The key to improving the emergency response ability lies in collecting and extracting the useful information from the relevant news reports effectively. The coreference resolution is an important subtask for this purpose. In the paper, we present an approach to coreference resolution based on Maximum Entropy Model for Chinese news reports about sudden events. We exploit the semantic class features, the semantic role features, as well as the semantic related features, the redirection features and context features extracted from the Wikipedia. The experimental results confirm the positive effect to the coreference resolution by adding selected semantic knowledge except pure semantic role which can make the system F value dropped by 1.31%.
关键词
中文信息处理 /
突发事件 /
共指消解 /
语义特征 /
最大熵模型
{{custom_keyword}} /
Key words
Chinese information processing /
paroxysmal event /
coreference resolution /
semantic features /
maximum entropy model
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张牧宇. 基于中心语匹配的共指消解[J].中文信息学报,2011,25(3):3-8.
[2] Vincent Ng.Shallow Semantics For Coreference Resolution[A].IJCAI,2007: 1689-1694.
[3] Xiaofeng Yang,Jian Su. Coreference Resolution Using Semantic Relatedness Information from Automatically Discovered Patterns[C]//Proceedings of ACL, 2007:528-535.
[4] 王海东,胡乃全,孔芳,等.指代消解中语义角色特征的研究[J].中文信息学报,2009,23(1):23-29.
[5] 杨尔弘.突发事件信息提取研究[D]. 北京语言大学博士学位论文, 2005.
[6] 庞宁,杨尔弘.基于最大熵模型的共指消解研究[J].中文信息学报,2008,22(2):24-27.
[7] 李艳翠.语义信息在指代消解中的应用研究[D],苏州大学硕士学位论文,2008.
[8] 郎君,等.集成多种背景语义知识的共指消解[J],中文信息学报,2009,23(3):3-9.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
山西省自然科学基金(2012011011-4)
{{custom_fund}}