基于转化的互联网广告方式根据用户在浏览广告后的购买等行为对广告效果进行衡量,极大利用了互联网广告的独特优势,成为了未来互联网广告发展的趋势。该文介绍了基于转化的互联网广告的运行方式,分析了其行业应用,进一步地总结了该领域的当前研究成果,包括基于转化的竞价机制设计、转化率预测、基于转化的广告排序等。最后在此基础上,分析了存在的问题并展望未来的研究方向。
Abstract
The conversion-based advertising,which evaluateseffectiveness of an advertisement and chargesaccording to conversion occurred after a user viewed theadvertisement, leverages the unique power of Internet Advertising, and becomes the trend for future development of Internet Advertising. This paper introduces the scheme of the conversion-based advertising, analyzes its industrial application, and summarizes the researches on this field, including auction mechanism for CPA advertising, conversion rate estimation, conversion-based ad ranking, etc. Finally we analyze the existing problem and present the directions for further study.
关键词
互联网广告 /
转化率 /
按行动付费广告
{{custom_keyword}} /
Key words
internet advertising /
conversion rate /
cost-per-action advertising
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Varian H. Position auctions[J]. International Journal of Industrial Organization, 2007, 25(6):1163-1178.
[2] Edelman B, Ostrovsky M, Schwarz M. Internet advertising and the generalized second price auction: Selling billions of dollars worth of keywords[R].The American Economic Review, 2005.
[3] Group E. Online advertising: Pay per sale[J]. The Economist, 2005, 10:110-111.
[4] Michael Peterson K K, Grone F, Kirscheneder J. Performance-Based Advertising Models Extending the Principles of Profit-Driven Marketing[M].2007.
[5] Mitchell D. Click fraud and halli-bloggers[N]. New York Times, 2005, July.
[6] Penenberg A. Click fraud threatens web[N]. Wired News, 2004, October.
[7] Helft M. Google Tests an Ad Idea: Pay Only for Results[N]. New York Times, 2007, March.
[8] Yahoo. Yahoo! Search Marketing[OL].http://www.yahoosearchmarketingsea.com.
[9] Broder A, Ciccolo P, Fontoura M, et al. Search advertising using web relevance feedback[C]//Proceeding of the 17th ACM conference on Information and knowledge management.2008:1013-1022.
[10] Raghavan H, Iyer R. Probabilistic first pass retrieval for search advertising: From theory to practice[C]//Proceedings of the 19th ACM international conference on Information and knowledge management.2010:1019-1028.
[11] Krishna V. Auction theory[M].Academic press, 2009.
[12] Nazerzadeh H, Saberi A, Vohra R. Dynamic cost-per-action mechanisms and applications to online advertising[C]//Proceeding of the 17th international conference on World Wide Web.2008:179-188.
[13] Mahdian M, Tomak K. Pay-per-action model for online advertising[C]//Proceedings of the 1st international workshop on Data mining and audience intelligence for advertising.2007:1-6.
[14] Immorlica N, Jain K, Mahdian M, et al. Click fraud resistant methods for learning click-through rates[J]. Internet and Network Economics, 2005:34-45.
[15] Bagherjeiran A, Hatch A, Ratnaparkhi A. Ranking for the conversion funnel[C]//Proceeding of the 33rd international ACM SIGIR conference on Research and development in information retrieval.2010:146-153.
[16] Rey B, Kannan A. Conversion rate based bid adjustment for sponsored search[C]//Proceedings of the 19th international conference on World wide web.2010:1173-1174.
[17] Xu W, Manavoglu E, Cantu-Paz E. Temporal click model for sponsored search[C]//Proceeding of the 33rd international ACM SIGIR conference on Research and development in information retrieval.2010:106-113.
[18] Joachims T, Granka L, Pan B, et al. Accurately interpreting clickthrough data as implicit feedback[C]//Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval.2005:154-161.
[19] Agichtein E, Brill E, Dumais S. Improving web search ranking by incorporating user behavior information[C]//Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval.2006:19-26.
[20] Ciaramita M, Murdock V, Plachouras V. Online learning from click data for sponsored search[C]//Proceeding of the 17th international conference on World Wide Web.2008:227-236.
[21] Richardson M, Dominowska E, Ragno R. Predicting clicks: estimating the click-through rate for new ads[C]//Proceedings of the 16th international conference on World Wide Web.2007:521-530.
[22] Shaparenko B, etin , Iyer R. Data-driven text features for sponsored search click prediction[C]//Proceedings of the Third International Workshop on Data Mining and Audience Intelligence for Advertising.2009:46-54.
[23] Hillard D, Manavoglu E, Raghavan H, et al. The sum of its parts: reducing sparsity in click estimation with query segments[J]. Information Retrieval, 2011:1-22.
[24] Graepel T, Candela J, Borchert T, et al. Web-scale Bayesian click-through rate prediction for sponsored search advertising in Microsofts Bing search engine[C]//Proceedings of the Twenty-Seventh International Conference on Machine Learning (ICML-10).2010:13-20.
[25] Kota N, Agarwal D. Temporal multi-hierarchy smoothing for estimating rates of rare events[C]//Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining.2011:1361-1369.
[26] Rutz O, Bucklin R. A model of individual keyword performance in paid search advertising[OL]. 2007.http://papers.ssrn.com/sol3/papers.cfm?abstract id=1024765.
[27] Becker H, Broder A, Gabrilovich E, et al. What happens after an ad click?: quantifying the impact of landing pages in web advertising[C]//Proceeding of the 18th ACM conference on Information and knowledge management.2009:57-66.
[28] Ghose A, Yang S. An empirical analysis of sponsored search performance in search engine advertising[C]//Proceedings of the international conference on Web search and web data mining. 2008:241-250.
[29] Choi Y, Fontoura M, Gabrilovich E, et al. Using landing pages for sponsored search ad selection[C]//Proceedings of the 19th international conference on World wide web. 2010:251-260.
[30] Zhu Y, Wilbur K. Hybrid Advertising Auctions[J]. Marketing Science, 2011, 30(2):249-273.
[31] Agarwal N, Athey S, Yang D. Skewed bidding in pay-per-action auctions for online advertising[J].American Economic Review Papers and Proceedings.2009,99:441-447.
[32] Guo Q, Agichtein E. Ready to buy or just browsing?: detecting web searcher goals from interaction data[C]//Proceeding of the 33rd international ACM SIGIR conference on Research and development in information retrieval.2010:130-137.
[33] Hu Y, Shin J, Tang Z. Pricing of Online Advertising: Cost-Per-Click-Through Vs. Cost-Per-Action[C]//Proceedings of System Sciences (HICSS), 2010 43rd Hawaii International Conference.2010: 1-9.
[34] Broder A, Ciaramita M, Fontoura M, et al. To swing or not to swing: Learning when (not) to advertise[C]//Proceeding of the 17th ACM conference on Information and knowledge management.2008:1003-1012.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(61070111)
{{custom_fund}}