This paper presents a system for Uyghur Online-Handwritten word recognition. According to the characteristics of the Uyghur word handwriting, the system adoptes a strategy based on multiple classifier combination, using Gaussian Mixture Model forthe static image and Hidden Markov Model for the dynamic writing trajectory of the handwritten word, respectively.The combination of multiple classifiers improves the recognition accuracy effectively. In the preliminary experiments, our system achieves an accuracy of 97% and 99%, respectively.
Riyiman Tursun, Wushour Silamu.
A Uyghur Online-Handwritten Word Recognition System. Journal of Chinese Information Processing. 2014, 28(3): 112-115
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 任宏宇. 基于BP神经网络的联机手写维吾尔字符识别[D].新疆大学硕士学位论文,2011. [2] 吾守尔·斯拉木,热依曼·吐尔逊.基于B/S模式的维吾尔文在线处理技术及其实现[J],计算机工程与应用(汉),2006,42(29):205-206. [3] 哈力木拉提,阿孜古丽.多字体印刷维吾尔文字符识别系统的研究与开发[J]. 计算机学报:2004, 27:1480-1484. [4] 皮桂林. 基于HMM模型的联机手写维文单词识别方法研究[D].乌鲁木齐:新疆大学硕士学位论文,2012. [5] Zhen-Long BAI, Qiang HUO. A Study On the Use of 8-Directional Features For Online Handwritten Chinese Character Recognition[J].In ICDAR-2005, 2005:1520-5263/05.