微博信息传播网络的结构属性分析

王晓明,王 莉,杨敬宗

PDF(5482 KB)
PDF(5482 KB)
中文信息学报 ›› 2014, Vol. 28 ›› Issue (3) : 55-61.
信息检索及社会计算

微博信息传播网络的结构属性分析

  • 王晓明,王 莉,杨敬宗
作者信息 +

Research on Microblog Information Diffusion Network Structural Properties

  • WANG Xiaoming, WANG Li, YANG Jingzong
Author information +
History +

摘要

当前微博迅速流行,由于它交互结构的复杂性,其研究分析难度较大,该文提出了一种新颖的方法分析微博信息传播网络的属性。首先定义了信息源的概念,针对6个不同主题事件的微博传播结构,对各信息传播网络结构进行了可视化分析,并给出了信息源分布特征分析。带有时间标签的信息传播网络通常是有向非循环图,定义了3种信息传播微元结构,分别对应信息分散、信息聚集、信息传递。利用斯皮尔曼等级相关系数研究了它们之间的关联度,发现3种结构间有相当大的差异,基于这3种关系分析了信息传播网络的演变情况,得出信息分散结构在各时间片上的数量最多。

Abstract

Microblog is widely used nowadays. While its users interaction structure is complex, a novel method is proposed in this paper to analyze the property of microblog information diffusion network. We first give the definition of the information source. Then information diffusion networks for six different topic events are visualized and analyzed. Information diffusion network is modeled as a directed acyclic graph, and three motif structures are defined to present information scattering, information gathering and information transmitting, respectively. According to the Spearman rank correlation coefficient, the distributions of the three motif structures are quite different from each other. As for the information diffusion network evolution, it is dount that the information scattering structure has the largest number at each snapshot.

关键词

信息传播网络 / 网络社区 / 微元结构 / 网络可视化

Key words

information diffusion networks / network communities / basic structure / network visualization

引用本文

导出引用
王晓明,王 莉,杨敬宗. 微博信息传播网络的结构属性分析. 中文信息学报. 2014, 28(3): 55-61
WANG Xiaoming, WANG Li, YANG Jingzong. Research on Microblog Information Diffusion Network Structural Properties. Journal of Chinese Information Processing. 2014, 28(3): 55-61

参考文献

[1] 程学旗, 沈华伟. 社会信息网络中的社区分析[J]. 中国计算机学会通讯, 2011, 12(7): 12-20.
[2] Kim J W, Candan K S, Tatemura J. Efficient overlap and content reuse detection in blogs and online news articles[C]//Proceedings of the 18th international conference on World wide web. ACM, 2009: 81-90.
[3] Boyd D, Golder S, Lotan G. Tweet, tweet, retweet: Conversational aspects of retweeting on twitter[C]//System Sciences (HICSS), 2010 43rd Hawaii International Conference on. IEEE, 2010: 1-10.
[4] Huberman B A, Romero D M, Wu F. Social networks that matter: Twitter under the microscope[J]. arXiv preprint arXiv:0812.1045, 2008.
[5] Yang J, Counts S. Predicting the Speed, Scale, and Range of Information Diffusion in Twitter[J]. ICWSM, 2010, 10: 355-358.
[6] Gomez Rodriguez M, Leskovec J, Krause A. Inferring networks of diffusion and influence[C]//Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, 2010: 1019-1028.
[7] Nagata K, Shirayama S. Method of analyzing the influence of network structure on information diffusion[J]. Physica A: Statistical Mechanics and its Applications, 2012, 391(14): 3783-3791.
[8] 田占伟, 隋玚. 基于复杂网络理论的微博信息传播实证分析[J]. 图书情报工作, 2012, 56(8): 42-46.
[9] Cioffi‐Revilla C. Computational social science[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(3): 259-271.
[10] 窦炳琳, 李澍淞, 张世永. 基于结构的社会网络分析[J]. 计算机学报, 2012, 35(4): 741-753.
[11] 田大芳. 图书情报学期刊互引网络结构分析[J]. 情报杂志, 2009 (6): 48-51.
[12] Fruchterman T M J, Reingold E M. Graph drawing by force—directed placement[J]. Software: Practice and experience, 1991, 21(11): 1129-1164.
[13] Zar J H. Significance testing of the Spearman rank correlation coefficient[J]. Journal of the American Statistical Association, 1972, 67(339): 578-580.

基金

国家重点973项目(2013CB329602);863项目(2014AA015204);第53批中国博士后基金项目(2013M530738);山西省国际合作项目(2011081034);山西省回国留学基金项目(2010-31)
PDF(5482 KB)

640

Accesses

0

Citation

Detail

段落导航
相关文章

/