事件关系检测是一项面向事件之间逻辑关系的自然语言处理技术。事件关系识别的核心任务是以事件为基本语义单元,通过分析事件的篇章结构信息及语义特征,实现事件逻辑关系的深层检测。该文首次建立一套事件关系检测的任务和研究体系,包括任务定义、关系体系划分、语料采集与标注、评价方法等。同时,该文提出了一种跨场景推理的事件关系检测方法,该方法认为,具有相同事件场景的“事件对”,往往具有相同的事件关系类型。该文提出的基于跨场景推理的事件关系检测方法在针对四大类事件关系类型的检测精确率为54.21%。
Abstract
Event relation detection aims to detect a logical relation between pairwise events. The key to event relation detection is to detect latent logical relation between events by analyzing the corresponding discourse structure and semantic features of events, with the techniques of semantic relation recognition and inference. In this paper, we build an overall framework of the event relation detection task, including task definition, relation hierarchical structure, corpora acquisition and evaluation. Meanwhile, we propose a cross-scenario inference method to predict relation between pairwise events, which follows the basic hypothesis that if events express the same scenarios, they normally trigger similar relations. Finally, we experiment on four general semantic relations, Expansion, Comparison, Contingency and Temporal, achieving an accuracy of 54.21%.
关键词
事件关系 /
框架语义 /
事件场景向量 /
事件场景
{{custom_keyword}} /
Key words
event relation /
frame /
event scenario vector /
event scenario
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] C J Fillmore, C Johnson, M Petruck. Background to FrameNet[J]. International Journal of Lexicography,2003,16(3): 235-250.
[2] C Hashimoto, K Torisawa, J Kloetzer, et al. Toward Future Scenario Generation: Extracting Event Causality Exploiting Semantic Relation, Context, and Association Features[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore, 2014.
[3] TChklovski, P Pantel. Global path-based refinement of noisy graphs applied to verb semantics[C]//Proceedings of Toward Future Scenario Generation: Extracting Event Causality Exploiting Semantic Relation, Context, and Association Features, Jeju Island, Korea, 2005: 792-803.
[4] PPantel, M Pennacchiotti. Espresso: leveraging generic patterns for automatically harvesting semantic relations[C]//Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the ACL, Sydney, Australia, 2006: 113-120.
[5] Z S Harris. Mathematical Structure of Language[M]. New York, 1968.
[6] D Lin, P Pantel. Discovery of Inference Rules from Text[C]//Proceedings of the 7th ACM SIGKDD, San Francisco, California, USA, 2001: 323-328.
[7] E Pitler, M Raghupathy, H Mehta, et al. Easily identifiable discourse relations[C]//Proceedings of the 22nd International Conference on the COLING, 2008: 87-90
[8] E Pitler, M Raghupathy, H Mehta, et al. Easily identifiable discourse relations[C]//Proceeding of the 22nd International Conference on Computational Linguistics (COLING 2008), Posters, Manchester, UK, 2008: 87-90.
[9] The Penn Discourse Treebank 2.0 Annotation Manual, 2007
[10] Y Hong, X P Zhou, T T Che, et al. Cross-Argument Inference for Implicit Discourse Relation recognition[C]//Proceedings of the 21st ACM International Conference on Information and Knowledge Management(CIKM 2012),2012: 295-304.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(61373097,61272259,61272260,90920004),教育部博士学科点专项基金(2009321110006,20103201110021),江苏省自然科学基金(BK2011282),江苏省高校自然科学基金重大项目(11KJA520003)以及苏州市自然科学基金(SH201212)。
{{custom_fund}}