基于模糊集合的汉语主观句识别

宋洪伟,贺宇,付国宏

PDF(743 KB)
PDF(743 KB)
中文信息学报 ›› 2014, Vol. 28 ›› Issue (6) : 137-142.
情感分析与社会计算

基于模糊集合的汉语主观句识别

  • 宋洪伟,贺宇,付国宏
作者信息 +

Chinese Subjective Sentence Recognition Based on Fuzzy Sets

  • SONG Hongwei, HE Yu, FU Guohong
Author information +
History +

摘要

主观句识别的工作在诸如情感分类和意见摘要等意见挖掘系统中占有很重要的地位。在该文中,我们提出一种基于情感密度的模糊集合分类器以识别汉语主观句。首先,我们利用优势率方法从训练语料中抽取主观性线索词;然后,为了能更好的表达一个句子的主观性,我们利用抽取出的主观性线索词计算出每个句子的情感密度;最后,我们结合情感密度的特点实现了一个三角形隶属度函数的模糊集合分类器以识别主观句。我们在NTCIR-6中文数据中做了两组实验。实验结果表明我们的方法具有一定的可行性。

Abstract

Subjectivity recognition plays an important role in many opinion mining systems such as sentiment classifiers and opinion summarization systems. In this paper, we present a sentiment density based fuzzy sets classifier for Chinese subjectivity classification. In this study, we first employ the odds ratio technique to extract subjective cues from training data. Then, we calculate sentiment density using the extracted subjective cues to represent sentence subjectivity. Finally, we implement a triangular fuzzy sets classifier with sentiment density as features for subjectivity classification. We conduct two experiments on the NTCIR-6 Chinese opinion data, showing the feasibility of the proposed method.

关键词

主观句识别 / 情感密度 / 模糊集合 / 优势率

Key words

subjectivity recognition / sentiment density / fuzzy sets / odds ratio

引用本文

导出引用
宋洪伟,贺宇,付国宏. 基于模糊集合的汉语主观句识别. 中文信息学报. 2014, 28(6): 137-142
SONG Hongwei, HE Yu, FU Guohong. Chinese Subjective Sentence Recognition Based on Fuzzy Sets. Journal of Chinese Information Processing. 2014, 28(6): 137-142

参考文献

[1] B Liu. Sentiment analysis and subjectivity[J]. Handbook of natural language processing, 2010, 2: 627-666.
[2] B Pang, L Lee. Opinion mining and sentiment analysis[J]. Foundations and trends in information retrieval, 2008, 2(1-2): 1-135.
[3] Y Seki, D Evans, L Ku, et al. Overview of opinion analysis pilot task at NTCIR-6[C]//Proceedings of NTCIR-6 Workshop Meeting. 2007: 265-278.
[4] H Yu, V Hatzivassiloglou. Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences[C]//Proceedings of EMNLP'03, 2003: 129-136.
[5] B Pang, L Lee. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts[C]//Proceedings of ACL04, 2004: 271-278.
[6] C Lin, Y He, R Everson. Sentence subjectivity detection with weakly-supervised learning[C]//Proceedings of IJCNLP'11. 2011: 1153-1161.
[7] V Hatzivassiloglou, J Wiebe. Effects of adjective orientation and gradability on sentence subjectivity[C]//Proceedings of ACL'00, 2000: 299-305.
[8] E Riloff, J Wiebe, T Wilson. Learning subjective nouns using extraction pattern bootstrapping[C]//Proceedings of HLT-NAACL'03, 2003: 25-32.
[9] J Wiebe, R Mihalcea. Word sense and subjectivity[C]//Proceedings of COLING-ACL06, 2006: 1065-1072.
[10] C Akkaya, J Wiebe, R Mihalcea. Subjectivity word sense disambiguation[C]//Proceedings of EMNLP'09, 2009: 190-199.
[11] E Riloff, J Wiebe, W Phillips. Exploiting subjectivity classification to improve information extraction[C]//Proceedings of AAAI'05, 2005: 1106-1111.
[12] N Jindal, B Liu. Identifying comparative sentences in text documents[C]//Proceedings of SIGIR'06, 2006: 244-251.
[13] M Karamibekr, A Ghorbani. Sentence subjectivity analysis in social domains[C]//Proceedings of the 2013 IEEE /ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies, 2013: 268-275.
[14] R Remus. Improving sentence-level subjectivity classification through readability measurement[C]// Proceedings of NODALIDA'11, 2011: 168-174.
[15] X Wang, G Fu. Chinese subjectivity detection using a sentiment density-based naive Bayesian classifier[C]//Proceedings of ICMLC'10, 2010: 3299-3304.
[16] G Fu, C Kit, J Webster. Chinese word segmentation as morpheme-based lexical chunking[J]. Information Sciences, 2008, 178(9): 2282-2296.
[17] G Fu, K Luke. Chinese named entity recognition using lexicalized HMMs[J]. ACM SIGKDD Explorations Newsletter, 2005, 7(1): 19-25.
[18] Y Wu, D Oard. NTCIR-6 at Maryland: Chinese opinion analysis pilot task[C]//Proceedings of the 6th NTCIR Workshop on Evaluation of Information Access Technologies, 2007: 344-349.

基金

国家自然科学基金(60973081,61170148);黑龙江省人力资源和社会保障厅留学人员科技活动项目(1154hz26);黑龙江大学研究生创新科研项目重点项目(YJSCX2014-017HLJU)
PDF(743 KB)

Accesses

Citation

Detail

段落导航
相关文章

/