基于用户分析的微博用户影响力度量模型

张绍武,尹 杰,林鸿飞,魏现辉

PDF(4151 KB)
PDF(4151 KB)
中文信息学报 ›› 2015, Vol. 29 ›› Issue (4) : 59-66.
情感分析与社会计算

基于用户分析的微博用户影响力度量模型

  • 张绍武,尹 杰,林鸿飞,魏现辉
作者信息 +

A Micro-blog User Influential Model Based on User Analysis

  • ZHANG Shaowu, YIN Jie, LIN Hongfei, WEI Xianhui
Author information +
History +

摘要

微博用户影响力作为影响力研究在微博领域的延伸,已逐渐成为一个研究热点。该文在传统影响力度量指标的基础上,结合微博价值、消息传播过程中产生的影响力扩散以及用户的活跃程度,提出了三种新影响力度量方法,包括微博影响力、行为影响力以及活跃度影响力。此外,通过有效融合上述三种新度量方法提出了新的微博用户影响力度量模型。最后,针对不同影响力度量指标,该文对它们的内部关系进行分析,并阐述了影响力度量指标之间关联程度及形成原因。

Abstract

As an extension of the user influence research, micro-blog user influence mining is becoming a hot research issue. Based on traditional user influence measures, we propose three novel methods to mining micro-blog user influence in terms of the value of micro-blogging, the proliferation influence of message propagation and the user active level. Meanwhile, a user influence model including tweet influence, behavior influence, and activity influence is presented. Finally, for different influence indicators, we describe their internal relations with discussions for possible reasons.

关键词

用户影响力 / 新浪微博 / 传播路径

Key words

user influence / sina microblog / propagation path

引用本文

导出引用
张绍武,尹 杰,林鸿飞,魏现辉. 基于用户分析的微博用户影响力度量模型. 中文信息学报. 2015, 29(4): 59-66
ZHANG Shaowu, YIN Jie, LIN Hongfei, WEI Xianhui. A Micro-blog User Influential Model Based on User Analysis. Journal of Chinese Information Processing. 2015, 29(4): 59-66

参考文献

[1]M Cha, H Haddadi, F Benevenuto, et.al. Measuring User Influence in Twitter: The Million Follower Fallacy [C]//Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media. Washington, DC, USA, 2010: 10-17.
[2] Ye S, Wu S F. Measuring Message Propagation and Social Influence on Twitter.com[J]. Springer Berlin, 2010: 216-231.
[3] Weng J, Lim E P, Jiang J, et al. TwitterRank: Finding Topic-sensitive Influential Twitterers[C]//Proceedings of the third ACM international conference on Web search and data mining. New York, NY, USA, 2010:261-270.
[4] Lee C, Kwak H, Park H, et al. Finding influentials based on the temporal order of information adoption in twitter[C]//Proceedings of the 19th international conference on world wide web. New York, NY, USA, 2010: 1137-1138.
[5] Romero D M, Galuba W, Asur S, et al. Influence and passivity in social media[J]. Springer Berlin Heidelberg, 2011: 18-33.
[6] Yu L, Asur S, Huberman B A. What trends in chinese social media[C]//Proceedings of the 5th SNA-KDD Workshop on Social Network Mining and Analysis. San Diego, CA USA, 2011: 37.
[7] 石磊, 张聪, 卫琳. 引入活跃指数的微博用户排名机制[J]. 小型微型计算机系统, 2012, 33(1):110-114.
[8] Kwee A T, Lim E P, Achananuparp P, et al. Follow Link Seeking Strategy—A Pattern Based Approach [C]//Proceedings of the 6th SNA-KDD Workshop on Social Network Mining and Analysis. Beijing, China, 2012.
[9] Thomas L. Saaty L. Theory and applications of the analytic network process[M]. Pittsburgh: RWS Publications, 2005.
[10] Thomas L. Saaty. Decision making with the analytic hierarchy process[J].International Journal of Services Sciences, 2008, 1(1): 83-98.
[11] Barabasi A-L, Albert R. Emergence of Scaling in Random Networks[J]. Science, 1999, 286( 5439): 509-512.
[12] Zar J H. Significance Testing of the Spearman Rank Correlation Coefficient[J]. Journal of the American Statistical Asso, 1972, (67): 578-580.
[13] Spearman C. The proof and measurement of association between two things[J]. The American Journal of Psychology, 1904, 15(1): 72-101.
[14] Sen P K. Estimates of the Regression Coefficient Based on Kendalls Tau[J]. Journal of the American Statistical Association, 1968, (63):1379-1382.
[15] Kendall M G. A new measure of rank correlation[J]. Biometrika, 1938, 30(1/2): 81-93.
[16] Romero D M, Galuba W, Asur S, et al. Influence and passivity in social media[J]. Springer Berlin Heidelberg, 2011: 18-33.
[17] 尹杰,基于用户分析的微博信息过滤研究[D],大连: 大连理工大学硕士学位论文,2013.

基金

国家自然科学基金(60973068,61277370);辽宁省自然科学基金(201202031,2014020003)
PDF(4151 KB)

721

Accesses

0

Citation

Detail

段落导航
相关文章

/