利用Markov网络抽取复述增强机器译文自动评价方法

翁 贞,李茂西,王明文

PDF(1093 KB)
PDF(1093 KB)
中文信息学报 ›› 2015, Vol. 29 ›› Issue (5) : 136-143.
机器翻译

利用Markov网络抽取复述增强机器译文自动评价方法

  • 翁 贞,李茂西,王明文
作者信息 +

Enhance Automatic Evaluation of Machine Translation by Markov Network Based Paraphrases

  • WENG Zhen, LI Maoxi, WANG Mingwen
Author information +
History +

摘要

在机器译文自动评价中,匹配具有相同语义、不同表达方式的词或短语是其中一个很大的挑战。许多研究工作提出从双语平行语料或可比语料中抽取复述来增强机器译文和人工译文的匹配。然而双语平行语料或可比语料不仅构建成本高,而且对少数语言对难以大量获取。我们提出通过构建词的Markov网络,从目标语言的单语文本中抽取复述的方法,并利用该复述提高机器译文自动评价方法与人工评价方法的相关性。在WMT14 Metrics task上的实验结果表明,我们从单语文本中提取复述方法的性能与从双语平行语料中提取复述方法的性能具有很强的可比性。因此,该文提出的方法可在保证复述质量的同时,降低复述抽取的成本。

Abstract

It is a challenge to match the different expressions (words or phrases) which have the same meanings in the automatic evaluation of machine translation. Many researchers proposed to enhance the matches between the words in machine translation and in human references by extracting paraphrases from bilingual parallel corpus or comparable corpus. However, the cost of constructing the bilingual parallel corpus or the comparable corpus is high; furthermore, it is difficult to obtain a large corpus between some language pairs. In this paper, the paraphrases are extracted from the monolingual texts in the target language by constructing the Markov networks of words, and applied to improve the correlation between the results of automatic evaluation and the human judgments of machine translation. The experimental results on WMT14 Metrics task showed that the performances of the proposed approach of extracting paraphrase from monolingual text are comparable to that of extracting paraphrase from bilingual parallel corpus.

关键词

复述 / 机器译文自动评价 / Markov网络 / 相关性

Key words

paraphrase / automatic evaluation of machine translation / Markov network / correlation

引用本文

导出引用
翁 贞,李茂西,王明文. 利用Markov网络抽取复述增强机器译文自动评价方法. 中文信息学报. 2015, 29(5): 136-143
WENG Zhen, LI Maoxi, WANG Mingwen. Enhance Automatic Evaluation of Machine Translation by Markov Network Based Paraphrases. Journal of Chinese Information Processing. 2015, 29(5): 136-143

基金

国家自然科学基金(61163006,61203313,61462044,61272212);国家语委“十二五”规划(YB125-99);江西省自然科学基金(20132BAB201030,20151BAB207025);江西省研究生创新基金(YC2014-S149)
PDF(1093 KB)

Accesses

Citation

Detail

段落导航
相关文章

/