基于模糊推理机的汉语主观句识别

宋洪伟,宋佳颖,付国宏

PDF(851 KB)
PDF(851 KB)
中文信息学报 ›› 2015, Vol. 29 ›› Issue (5) : 160-167.
社会计算与情感分析

基于模糊推理机的汉语主观句识别

  • 宋洪伟,宋佳颖,付国宏
作者信息 +

Chinese Subjective Sentence Recognition Based on Fuzzy Inference Machine

  • SONG Hongwei, SONG Jiaying, FU Guohong
Author information +
History +

摘要

该文提出一种基于词汇模糊集合的模糊推理机以识别汉语主观句。首先,根据主、客观词概念的模糊性,我们定义了两个相应的模糊集合,并在模糊统计方法下,利用TF-IDF从训练语料中获取隶属度函数。然后制定了两个模糊IF-THEN规则,并据此实现了一个模糊推理机以识别汉语主观句。NTCIR-6中文数据上的实验结果表明我们的方法具有一定的可行性。

Abstract

This paper presents a fuzzy inference machine for Chinese subjectivity identification. We first define two fuzzy sets for lexical subjectivity and objectivity, respectively. Then, we apply TF-IDF to acquire the relevant membership functions from the training data. Finally, we define two fuzzy IF-THEN rules and thus build a fuzzy inference machine for Chinese subjective sentence recognition. We conduct two experiments on the NTCIR-6 Chinese opinion data. The experimental results demonstrate the feasibility of the proposed method.

关键词

主观句识别 / 模糊集合 / 模糊IF-THEN规则 / 模糊推理机

Key words

subjectivity recognition / fuzzy sets / fuzzy IF-THEN rules / fuzzy inference machine

引用本文

导出引用
宋洪伟,宋佳颖,付国宏. 基于模糊推理机的汉语主观句识别. 中文信息学报. 2015, 29(5): 160-167
SONG Hongwei, SONG Jiaying, FU Guohong. Chinese Subjective Sentence Recognition Based on Fuzzy Inference Machine. Journal of Chinese Information Processing. 2015, 29(5): 160-167

参考文献

[1] Liu B. Sentiment analysis and subjectivity[J]. Handbook of natural language processing, 2010, 2: 627-666.
[2] Pang B, Lee L. Opinion mining and sentiment analysis[J]. Foundations and trends in information retrieval, 2008, 2(1-2): 1-135.
[3] Seki Y, Evans D, Ku L, et al. Overview of opinion analysis pilot task at NTCIR-6[C]//Proceedings of NTCIR-6 Workshop Meeting. 2007: 265-278.
[4] Hong Y, Hatzivassiloglou V. Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences[C]//Proceedings of EMNLP03, 2003: 129-136.
[5] Pang B, Lee. A sentimental education: Sentiment
analysis using subjectivity summarization based on minimum cuts[C]//Proceedings of ACL04, 2004: 271-278.
[6] 蒙新泛, 王厚峰. 主客观识别中的上下文因素的研究[J]. 中国计算机语言学研究前沿进展 (2007-2009), 2009: 594-599.
[7] Lin C, He Y, Everson R. Sentence Subjectivity Detection with Weakly-Supervised Learning[C]// Proceedings of IJCNLP. 2011: 1153-1161.
[8] Jiang W. Study on Identification of Subjective Sentences in Product Reviews Based on Weekly Supervised Topic Model[J]. Journal of Software, 2014, 9(7): 1952-1959.
[9] Hatzivassiloglou V,Wiebe J. Effects of adjective orientation and gradability on sentence subjectivity[C]//Proceedings of ACL’00, 2000: 299-305.
[10] Riloff E, Wiebe J, Wilson T. Learning subjective nouns using extraction pattern bootstrapping[C]//Proceedings of HLT-NAACL03, 2003: 25-32.
[11] Wiebe J, Mihalcea R. Word sense and subjectivity[C]//Proceedings of COLING-ACL’06, 2006: 1065-1072.
[12] 叶强, 张紫琼, 罗振雄. 面向互联网评论情感分析的中文主观性自动判别方法研究[J]. 系统信息学报, 2007,1(1): 79-91.
[13] Wilson T, Raaijmakers S. Comparing word, character, and phoneme n-grams for subjective utterance recognition[C]// Proceedings of INTERSPEECH. 2008: 1614-1617.
[14] Riloff E, Wiebe J, Phillips W. Exploiting subjectivity classification to improve information extraction[C]//Proceedings of AAAI05, 2005: 1106-1111.
[15] Jindal N, Liu B. Identifying comparative sentences in text documents[C]//Proceedings of SIGIR06, 2006: 244-251.
[16] Karamibekr M, Ghorbani A. Sentence subjectivity analysis in social domains[C]//Proceedings of the 2013 IEEE /ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies, 2013: 268-275.
[17] 张小红, 裴道武, 代建华. 模糊数学与 Rough 集理论[M]. 北京: 清华大学出版社, 2013.
[18] 阳爱民. 模糊分类模型及其集成方法[M]. 北京: 科学出版社, 2008.
[19] Rustamov S. Application of Neuro-Fuzzy Model for Text and Speech Understanding Systems[C]//Proceedings of PCI12, 2012: 1-4.

基金

国家自然科学基金(60973081, 61170148);黑龙江省人力资源和社会保障厅留学人员科技活动项目
PDF(851 KB)

647

Accesses

0

Citation

Detail

段落导航
相关文章

/