结合卷积神经网络和词语情感序列特征的中文情感分析

陈 钊,徐睿峰,桂 林,陆 勤

PDF(1496 KB)
PDF(1496 KB)
中文信息学报 ›› 2015, Vol. 29 ›› Issue (6) : 172-178.
综述

结合卷积神经网络和词语情感序列特征的中文情感分析

  • 陈 钊1,徐睿峰1,桂 林1,陆 勤2
作者信息 +

Combining Convolutional Neural Networks and Word Sentiment #br# Sequence Features for Chinese Text Sentiment Analysis

  • CHEN Zhao1, XU Ruifeng1, GUI Lin1, LU Qin2
Author information +
History +

摘要

目前基于词嵌入的卷积神经网络文本分类方法已经在情感分析研究中取得了很好的效果。此类方法主要使用基于上下文的词嵌入特征,但在词嵌入过程中通常并未考虑词语本身的情感极性,同时此类方法往往缺乏对大量人工构建情感词典等资源的有效利用。针对这些问题,该文提出了一种结合情感词典和卷积神经网络的情感分类方法,利用情感词典中的词条对文本中的词语进行抽象表示,在此基础上利用卷积神经网络提取抽象词语的序列特征,并用于情感极性分类。该文提出的相关方法在中文倾向性分析评测COAE2014数据集上取得了比目前主流的卷积神经网络以及朴素贝叶斯支持向量机更好的性能。

Abstract

Recently, the classification approach based on word embedding and convolutional neural networks achieved good results in sentiment classification task. This approach is mainly based on the contextual features of the word embeddings without the consideration of the polarity of the words. Meanwhile, this approach lacks of the use of manually compiled sentiment lexicon resources. To address these problems, this paper proposes a novel sentiment classification method which incorporates existing sentiment lexicon and convolutional neural networks. In this work, the words in text are abstractly represented by using existing sentiment words. The convolutional neural networks are used to extract sequence features from the abstracted word embeddings. Finally, the sequence features are applied to sentiment classification. The evaluations on Chinese Opinion Analysis Evaluation 2014 dataset show that our proposed approach outperforms the convolutional neural networks model with word embedding features and Nave Bayes Support Vector Machines.
Key words convolutional neural networks; sentiment analysis; word sentiment sequence features
   
   
   

关键词

卷积神经网络 / 情感分析 / 词语情感序列特征

Key words

convolutional neural networks / sentiment analysis / word sentiment sequence features

引用本文

导出引用
陈 钊,徐睿峰,桂 林,陆 勤. 结合卷积神经网络和词语情感序列特征的中文情感分析. 中文信息学报. 2015, 29(6): 172-178
CHEN Zhao,XU Ruifeng,GUI Lin,LU Qin. Combining Convolutional Neural Networks and Word Sentiment #br# Sequence Features for Chinese Text Sentiment Analysis. Journal of Chinese Information Processing. 2015, 29(6): 172-178

基金

国家自然科学基金(61370165,61203378);国家863计划(2015AA015405);广东省自然科学基金(S2013010014475);深圳市孔雀计划技术创新项目(KQCX20140521144507925);深圳数字舞台表演机器人技术工程实验室([2014]1507);深圳市基础研究计划(JCYJ20150625142543470)
PDF(1496 KB)

662

Accesses

0

Citation

Detail

段落导航
相关文章

/