语言网络研究的数学模型——从复杂网络、社会网络到语言网络

赵怿怡,刘海涛

PDF(1974 KB)
PDF(1974 KB)
中文信息学报 ›› 2015, Vol. 29 ›› Issue (6) : 46-53.
综述

语言网络研究的数学模型——从复杂网络、社会网络到语言网络

  • 赵怿怡1,刘海涛2
作者信息 +

Mathematical Modeling in Language Networks Research#br# ——From Complex Networks to Social Networks and Language Networks

  • ZHAO Yiyi1, LIU Haitao2
Author information +
History +

摘要

复杂网络技术的发展为大数据时代的语言研究提供了新的视角。网络方法应用到语言研究的重要目的是探索语言网络的结构特征规律和功能演化规律。该文综述了以图论为基础的复杂网络发展及社会网络、语言网络的主要数学模型,试图从复杂网络共性特征——小世界、无标度特征中进一步剥离出语言网络的个性特征,为语言符号多层级网络结构、功能研究提供参考。

Abstract

Networks technology provides a new perspective for linguistics in the age of big data. Network method applied in language networks is to explore the structure of the law and the evolution of language network functions. This article reviews the development of complex network based on Graph Theory and the primary mathematical modeling of social networks, language networks, aiming to strip personality traits of language networks out from the characteristics of complex networks, and giving more references for multi-level language networks studies.
Key words language networks; network technology; network evolution; complex network characteristics; graph theory
   
   
   

关键词

语言网络 / 网络技术 / 网络演化 / 图论 / 复杂网络特征

Key words

language networks / network technology / network evolution / complex network characteristics / graph theory

引用本文

导出引用
赵怿怡,刘海涛. 语言网络研究的数学模型——从复杂网络、社会网络到语言网络. 中文信息学报. 2015, 29(6): 46-53
ZHAO Yiyi,LIU Haitao. Mathematical Modeling in Language Networks Research#br# ——From Complex Networks to Social Networks and Language Networks. Journal of Chinese Information Processing. 2015, 29(6): 46-53

参考文献

[1] 赵怿怡,刘海涛.基于网络观的语言研究[J].厦门大学学报(哲学社会科学版), 2014, 226(6):127-136.
[2] Sigman M and Cecchi G A. Global organization of the Wordnet lexicon[M]. Procs. Natl. Acad. Sci. USA, 2002, 99(3):1742-1747.
[3] Ferrer i Cancho R, Solé R V, Khler R. Patterns in syntactic dependency networks [J]. Physical Review E, 2004, 69(5):343-358.
[4] 刘知远, 孙茂松. 汉语词同现网络的小世界效应和无标度特性[J]. 中文信息学报, 2007, 21 (6): 52-58.
[5] Liu H. The complexity of Chinese dependency syntactic networks[J]. Physica A., 2008, 387(12): 3048-3058.
[6] Liu H. Statistical Properties of Chinese Semantic Networks[J]. Chinese Science Bulletin. 2009, 54(16): 2781-2785.
[7] Steyvers M, Tenenbaum J B. The large-scale structure of semantic networks: statistical analyses and a model of semantic growth[J]. Cognitive Science, 2005, 29(1): 41-78.
[8] 刘海涛. 汉语语义网络的统计特征[J]. 科学通报,2009, 54(14): 2060-2064.
[9] Cong J, Liu H. Approaching human language with complex networks[J]. Physics of Life Reviews, 2014,(4): 598-618.
[10] Zhao Y. Three lines to view language network: Comment on “Approaching human language with complex networks” by Cong and Liu[J]. Physics of Life Reviews, 2014,(4):637-638.
[11] 赵怿怡,刘海涛.歧义结构理解中依存距离最小化倾向[J].计算机工程与应用,2014,50(6):7-11.
[12] Mehler A. Large Text Networks as an Object of Corpus Linguistic Studies[A]. In: Lüdeling, A. and Kyt, M. eds. Corpus Linguistics. An International Handbook. Berlin: Walter de Gruyter, 2008: 328-382.
[13] Diestel R. Graph Theory[M]. Springer, Heidelberg, 2005.
[14] Melnikov O, Sarvanov V, Tyshkevich R, et al. Exercises in Graph Theory[M]. Kluwer, Dordrecht, 1998.
[15] 赵怿怡,刘海涛语言同现网、句法网、语义网的构建与比较[J].中文信息学报,2014,28(5):24-31.
[16] Otte E, Rousseau R. Social Network Analysis: a Powerful Strategy, Also for the Information Sciences[J]. Journal of Information Science, 2002,28(6), 443-455.
[17] Egghe L, Rousseau R. A measure for the cohesion of weighted networks[J]. Journal of the American Society for Information Science, 2003, 53(3): 193-202.
[18] Solomonoff R, Rapoport A. Connectivity of random nets[J]. The bulletin of mathematical biophysics, 1951, 13(2):107-117.
[19] Erds Rényi. On the Evolution of Random Graphs[J]. Bulletin of the Institute of International Statistics, 1961, 38(4):17-61.
[20] Watts D J, Strogatz S H. Collective dynamic of small-world networks[J]. Nature, 1998, 393(6684): 440-442.
[21] Barabsi A-L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512.
[22] Milgram S. The small-world problem[J]. Psychology Today, 1967, 32(2): 185-195.
[23] Wasserman S, Faust K. Social Network Analysis. Methods and Applications[M]. Cambridge: Cambridge University Press, 1999.
[24] Bollobs B, Riordan O M. Mathematical results on scale-free random graphs[A]. In Bornholdt S and Schuster H G, editors. Handbook of Graphs and Networks. From the Genome to the Internet. Berlin: Wiley-VCH, 2003: 1-34.
[25] 刘海涛. 汉语句法网络的复杂性研究[J]. 复杂系统与复杂性科学, 2007, 4(4): 38-44.
[26] Newman M E J. The structure and function of complex networks[J]. SIAM Review, 2003, 45(2):167-256.
[27] Milo R, Shen-Orr S, Itzkovitz S, et al. Network motifs: simple building blocks of complex networks[J]. Science, 2002, 298(5594):824-827.
[28] Rapoport A. Zipfs law re-visited[A]. In Guiter H and Arapov M V, editors. Studies on Zipfs Law. Bochum: Brockmeyer, 1982: 1-28.
[29] Zipf G K. Human Behavior and the Principle of Least Effort: Human Ecology[M]. Massachusetts: Addison-Wesley Press, 1949.
[30] Barabsi A-L, Oltvai Z N. Network biology: Understanding the cells functional organization[J]. Nature Reviews. Genetics, 2004, 5(2): 101-113.
[31] Newman M E J. Power laws, Pareto distributions and Zipfs law[J]. Contemporary Physics, 2004, 46(5):323-351.
[32] Watts D J. Six Degrees. The Science of a Connected Age[M]. New York/London: W. W. Norton Company, 2003.
[33] Ravasz E, Somera A L, Mongru D A, et al. Hierarchical organization of modularity in metabolic networks[J]. Science, 2002, 297(5586):1551-1555.
[34] Simon H A. On a class of skew distribution functions[J]. Biometrika, 1955: 42:425-440.
[35] Newman, M.E.J. Assortative mixing in networks[J]. Physical Review Letters, 2002, 89(20): 208701.
[36] Newman M E J. Mixing patterns in networks[J]. Physical Review E, 2003, 67(2):241-251.
[37] Newman M E J, Park J. Why social networks are different from other types of networks[J]. Physical Review E, 2003, 68(3): 036122.
[38] Itzkovitz S, Milo R, Kashtan N, et al. Subgraphs in random networks[J]. Physical Review E, 2003, 68(2):125-149.
[39] Motter A E, De M A Lai, Y C, et al. Topology of the conceptual network of language[J]. Physical Review E. 2002, 65(6): 065102.
[40] Leskovec J, Kleinberg J, Faloutsos C. Graphs over time: densification laws, shrinking diameters and possible explanations[A]. In KDD 05: Proceeding of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining. New York: ACM Press, 2005: 177-187.
[41] Bornholdt S, Schuster H G. Handbook of Graphs and Networks. From the Genome to the Internet[M]. Weinheim: Wiley-VCH, 2003.

基金

国家社会科学基金(11&ZD188,14CYY046);厦门大学哲社科繁荣计划、两岸关系和平发展中心资助
PDF(1974 KB)

Accesses

Citation

Detail

段落导航
相关文章

/