李国臣, 刘展鹏,王瑞波,李济洪. 融合分词隐层特征的汉语基本块识别[J]. 中文信息学报, 2016, 30(2): 12-17.
LI Guochen, LIU Zhanpeng, WANG Ruibo, LI Jihong. Chinese Base-Chunk Identification Using Hidden-Layer Feature of Segmentation. , 2016, 30(2): 12-17.
Chinese Base-Chunk Identification Using Hidden-Layer Feature of Segmentation
LI Guochen1,2, LIU Zhanpeng1, WANG Ruibo3, LI Jihong3
1. School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi 030006, China; 2. Department of Computer Engineering, Taiyuan Institute of Technology, Taiyuan, Shanxi 030008, China; 3. Computer Center of Shanxi University, Taiyuan, Shanxi 030006, China)
Abstract:Based on the unit of Chinese character, a neural network learning model for Chinese base-chunk identification is constructed. The model combines the neural network learning model of segmentation task with the model of base-chunk identification by using the hidden-layer features of segmentation. The sentence-level likelihood function for base-chunk identification task is employed as the optimization target. The parameters of the two learning model are trained in turn. The experimental results show that: 1) the F-score of base-chunk identification with sentence-level likelihood function is 1.33% higher than that with character-level likelihood function, and especially, the recall for the multi-characters chunk identification is improved as much as 4.68%. 2) The final result of using hidden-layer features of segmentation task is 2.17% higher.
[1] Kudoh T, Matsumoto Y. Use of support vector learning for chunk identification[C]//Proceedings of the 2nd Workshop on Learning Language in Logic and the 4th Conference on Computational Natural Language Learning-Volume 7. Association for Computational Linguistics, 2000: 142-144. [2] Sha F, Pereira F. Shallow parsing with conditional random fields[C]//Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology-Volume 1. Association for Computational Linguistics, 2003: 134-141. [3] Shen H, Sarkar A. Voting between multiple data representations for text chunking[M]. Springer Berlin Heidelberg, 2005. [4] 周强, 任海波, 孙茂松. 分阶段构建汉语树库[C]//第二届中日自然语言处理专家研讨会,2002. [5] 周强. 基于规则的汉语基本块自动分析器[C]//第七届中文信息处理国际会议.2007. [6] 周强. 汉语基本块规则的自动学习和扩展进化[J]. 清华大学学报:自然科学版, 2008, 48:88-91. [7] 李超,孙健,关毅,等. 基于最大熵模型的汉语基本块分析技术研究 [R]CIPS-PaysEval. 2009. [8] 侯潇琪, 王瑞波, 李济洪. 基于词的分布式实值表示的汉语基本块识别[J]. 中北大学学报:自然科学版, 2013, (5):582-585. [9] 李国臣,党帅兵,王瑞波,等.基于字的分布表征的汉语基本块识别[J]. 中文信息学报, 2014, 28(6):18-25. [10] Collobert R, Weston J, Bottou L, et al. Natural language processing (almost) from scratch. [J]. Journal of Machine Learning Research, 2011, 12(1):2493-2537. [11] Nair V, Hinton G E. Rectified Linear Units Improve Restricted Boltzmann Machines.[C]//Proceedings of the 27th International Conference on Machine Learning (ICML-10). 2010:807-814. [12] Zeiler, M.D, Ranzato M, Monga R, et al. On rectified linear units for speech processing[C]//Proceedings of Acoustics, Speech, and Signal Processing, 1988. ICASSP-88., 1988 International Conference 2013:3517-3521. [13] Wu Y, Zhao H, Zhang L. Image Denoising with Rectified Linear Units[C]//Proceedings of Spriner International Publishing,2014:142-149. [14] 周强,李玉梅.汉语块分析评测任务设计[J]. 中文信息学报,2010, 24(1): 123-129. [15] Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[DB]. arXiv preprint arXiv:1301.3781, 2013.