基于用户相似性传递的跨平台交叉推荐算法

李 超,周 涛, 黄俊铭,程学旗,沈华伟

PDF(2657 KB)
PDF(2657 KB)
中文信息学报 ›› 2016, Vol. 30 ›› Issue (2) : 90-98.
情感分析与社会计算

基于用户相似性传递的跨平台交叉推荐算法

  • 李 超1,2 , 周 涛1,2, 黄俊铭3,程学旗3,沈华伟3
作者信息 +

Transfer with Shared Users: A Cross-platform

  • LI Chao1,2, ZHOU Tao1, HUANG Junming3, CHENG Xueqi3, SHEN Huawei3
Author information +
History +

摘要

个性化推荐系统在电子商务领域中的广泛应用带来了巨大的经济效益和良好的用户体验。由于用户数据往往分布在多个不同的网站,单个网站的推荐系统受制于数据稀疏性的限制,难以获得准确的推荐效果。该文提出了一种基于传递相似性的交叉推荐系统算法,可以利用多个网站平台数据计算不同网站中的用户的相似度,从而很大程度上克服了推荐系统中的数据稀疏性以及冷启动问题。结果显示,该交叉推荐算法与传统的针对单个数据集的推荐算法相比,推荐的精确性有一至两倍的提高。

Abstract

The widely use of personalized recommender systems on online shopping websites results in great profits and enhanced user experiences. However, since a users behaviors usually scatter cross multiple different websites, it becomes difficult to provide accurate recommendations when a recommender system sees a section of his behaviors on a single website. We propose a new recommendation algorithm that transfers behaviors across different websites to calculate similarities between users on different websites. Our algorithm overcomes the sparsity and cold-start problem in recommender systems with a significant accuracy improvment, outperforming traditional algorithms that applied on a single website only.

关键词

个性化推荐系统 / 协同过滤 / 多源数据 / 稀疏性 / 冷启动

Key words

personalization recommender systems / collaborative filtering / multiple source datasets / sparsity / cold-start problem

引用本文

导出引用
李 超,周 涛, 黄俊铭,程学旗,沈华伟. 基于用户相似性传递的跨平台交叉推荐算法. 中文信息学报. 2016, 30(2): 90-98
LI Chao, ZHOU Tao, HUANG Junming, CHENG Xueqi, SHEN Huawei. Transfer with Shared Users: A Cross-platform. Journal of Chinese Information Processing. 2016, 30(2): 90-98

参考文献

[1] Adomavicius G, Tuzhilin A, Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
[2] Linden G, Smith B, York J, Amazon.com Recommendations Item-to-Item Collaborative Filtering[J]. IEEE Internet Computing, 2003, 7(1): 76-80.
[3] Dahlen B J, Konstan J A, Herlocker J L, et al. Jumpstarting movielens: user benefits of starting a collaborative filtering system with “dead data”[R]. TR 98-017. University of Minnesota, March 1, 1998.
[4] Goldberg K, Roeder T, Gupta D,et al. A Constant time collaborative filtering algorithm[J]. Information Retrieval, 2001, 4(2): 133-151.
[5] Huang Z, Chen H, Zeng D. Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filter[J]. IEEE Trans Information Systems. 2004, 22(1): 116-142.
[6] Zhang ZK, Liu C, Zhang YC,et al. Solving the Cold-Start Problem in Recommender Systems with Social Tags[J]. EPL. 2010, 9228002.
[7] Su X, Khoshgoftaar T. A Survey of Collaborative Filtering Techniques[J]. Advances in Articial Intelligence, 2009.
[8] Hofmann T. Latent semantic models for collaborative filtering[J]. ACM Trans Inf. Syst, 2004, 22: 89-115.
[9] Koren Y.Collaborative filtering with temporal dynamics[J]. Commun. ACM, 2010, 53: 89-97.
[10] Koren, Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems[J]. IEEE Computer, 2009, 42: 30-37.
[11] Srebro N, Rennie JDM, Jaakkola, T. Maximum-margin matrix factorization[C]//Proceedings of the 17th Advances in Neural Information Processing Systems (NIPS04), 2004: 1329-1336.
[12] Salakhutdinov R, Mnih A, Probabilistic matrix factorization[C]//Proceedings of the 21st Advances in Neural Information Processing Systems(NIPS08), 2008: 1257-1264.
[13] Salakhutdinov R, Mnih, A. Bayesian probabilistic matrix factorization using markov chain monte carlo[C]//Proceedings of the 25th International Conference on Machine Learning. New York, NY, USA: ACM, ICML 08, 2008: 880-887.
[14] Y Zhou, et al.,Large-Scale Parallel Collaborative Filtering for the Netflix Prize[C]//Proceedings of 4th International Conference on Algorithmic Aspects in Information and Management, LNCS 5034, Springer, 2008: 337-348.
[15] S J Pan, Q Yang. A survey on transfer learning[C]//Proceedings of the IEEE Transactions on Knowledge and Data Engineering, 2010: 22(10):1345-1359.
[16] B Li, Q Yang, X Xue. Can movies and books collaborate? cross-domain collaborative filtering for sparsity reduction[C]//Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI09), 2009: 2052-2057.
[17] B Li. Cross-Domain Collaborative Filtering-A Brief Survey[C]//Proceedings of 23rd IEEE International Conference on Tools with Artificial Intelligence, 2011.
[18] W Pan, E W Xiang, N N Liu, et al. Transfer learning in collaborative filtering for sparsity reduction[C]//Proceedings of the 26th in AAAI,2010: 230-235.
[19] B Li, Q Yang, X Xue. Transfer learning for collaborative filtering via a rating-matrix generative model, in ICML, 2009, pp. 617-624.
[20] Resnick P, Iacovou N, Suchak M, et al, GroupLens: An Open Architecture for Collaborative Filtering of Netnews[C]//Proceedings of the 1994 ACM conference on Computer Supported Cooperative Work. New York, ACM, 1994: 175-186.
[21] Duo Sun, Tao Zhou, Jian-Guo Liu, etal. Information filtering based on transferring similarity[J]. Phys. Rev. E, 2009, 80, 017101.
[22] 刘建国,周涛,郭强,等. 个性化推荐系统的评价方法综述[J]. 复杂系统与复杂性科学,2009,6(3): 1-8.
[23] George K. Evaluation of item-based top-n recommendation algorithms[C]//Proceedings of the 10th International Conference on Information and Knowledge Management ACM, New York, 2001:247-254.

基金

国家基础研究发展计划(973)(2012CB316303,2013CB329602);国家自然科学基金(61232010,61202215)
PDF(2657 KB)

965

Accesses

0

Citation

Detail

段落导航
相关文章

/