基于统计的新浪微博动态传播规律研究

王 怡,梁 循,周小平

PDF(12412 KB)
PDF(12412 KB)
中文信息学报 ›› 2016, Vol. 30 ›› Issue (5) : 36-46.
综述

基于统计的新浪微博动态传播规律研究

  • 王 怡,梁 循,周小平
作者信息 +

A Statistical Analysis of the Propagation Mode in Sina Micorblog

  • WANG Yi, LIANG Xun, ZHOU Xiaoping
Author information +
History +

摘要

社交网络是一个庞大的新型复杂系统,用户和信息常用作研究网络静态结构和动态传播过程的典型对象,它们的结构特点和传播规律处处体现出社会网络复杂的特点。该文利用新浪微博约三万名用户及其发信息的数据,从上述两方面进行了研究。首先基于统计,本文发现了新浪微博网络的紧密程度较弱,并实证了关注网络的关联密度是线性的。其次,通过研究单条微博的传播过程的用户影响曲线,我们发现10%的用户能影响其他的90%。第三,该文从时间和转发结构两方面对微博的传播模型进行了归纳。相关的结论能够为后续模型建立、舆情监控等提供支持。

Abstract

Online Social Networking (OSN) is a complex system, where both users and messages are fundamental objects when investigating the network topology and the disseminations of information. To study the structure features and the rules of information propagation, this paper analyzes about 30,000 users including their friendships and the most recent 200 posts. The main statistical results include: 1) SINA network is not dense and the correlation density is almost linear; 2) during the dissemination of a single post, “10-90 rule” occurs, that is to say 10% of the users can affect the other 90%; and 3) four patterns can be concluded considering both life-cycle and forwarding structure. These results may provide the basis for subsequent modeling, as well as benefition the public opinion monitoring and cyber marketing.

关键词

新浪微博 / 线性关联密度 / 关键节点 / 传播模式

Key words

SINA micro-blog / linear correlation / key users / propagation mode

引用本文

导出引用
王 怡,梁 循,周小平. 基于统计的新浪微博动态传播规律研究. 中文信息学报. 2016, 30(5): 36-46
WANG Yi, LIANG Xun, ZHOU Xiaoping. A Statistical Analysis of the Propagation Mode in Sina Micorblog. Journal of Chinese Information Processing. 2016, 30(5): 36-46

参考文献

[1] 刘玮,王丽宏,李锐光. 面向话题的微博网络测量研究[J]. 通信学报,2013,11: 171-178.
[2] Magnani M,Montesi D,Rossi L.Information propagation analysis in a social network site[C]//ASONAM.2010: 296-300.
[3] Matsubara Y, Sakurai Y, Prakash B A. Rise and fall patterns of information diffusion: model and implications[C]//Proceedings of 18th ACM SIGKDD Int Conf Knowledge Discovery &Data Mining, 2012: 6-14.
[4] Sadikov E, Martinez M M M. Information propagation on Twitter[R]. CS322 Project Report, 2009.
[5] Sun E, Rosenn I, Marlow C, et al. Gesundheit! Modeling Contagion through Facebook News Feed[C]//ICWSM,2009.
[6] Shaozhi Y E, WU S. Measuring Message Propagation and Social Influence on Twitter. com[C]//Proceedings of the 2nd International Conference on Social Informatics,October.2010: 27-29.
[7] 樊鹏翼,王晖,姜志宏,李沛. 微博网络测量研究[J]. 计算机研究与发展,2012,04: 691-699.
[8] 曹玖新,吴江林,石伟,刘波,郑啸,罗军舟. 新浪微博网信息传播分析与预测[J]. 计算机学报,2014,04: 779-790.
[9] 沈乾,马宁,黄远,刘怡君. 微博传播波的函数解析实证研究[J]. 数学的实践与认识,2014,21: 143-151.
[10] 易成岐,鲍媛媛,薛一波,姜京池. 新浪微博的大规模信息传播规律研究[J]. 计算机科学与探索,2013,06: 551-561.
[11] Ren D, Zhang X, Wang Z, et al. WeiboEvents: a crowd sourcing weibo visual analytic system[C]//Pacific Visualization Symposium (PacificVis), 2014 IEEE. IEEE, 2014: 330-334.
[12] Sadikov E, Martinez M M M. Information propagation on Twitter[J]. CS322 Project Report, 2009.
[13] Ye S, Wu S F. Measuring message propagation and social influence on Twitter. com[M]. Springer Berlin Heidelberg, 2010.
[14] Kwak H, Lee C, Park H, et al. What is Twitter, a social network or a news media?[C]//Proceedings of the 19th international conference on World wide web. ACM, 2010: 591-600.
[15] Guille A, Hacid H. A predictive model for the temporal dynamics of information diffusion in online social networks[C]//Proceedings of the 21st international conference companion on World Wide Web. ACM, 2012: 1145-1152.
[16] Myers S A, Zhu C, Leskovec J. Information diffusion and external influence in networks[C]//Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2012: 33-41.

基金

国家自然科学基金(71531012、71271211);京东商城电子商务研究项目(413313012);北京市自然科学基金(4132067);中国人民大学品牌计划(10XNI029)
PDF(12412 KB)

532

Accesses

0

Citation

Detail

段落导航
相关文章

/