基于路径与深度的同义词词林词语相似度计算

陈宏朝,李 飞,朱新华,马润聪

PDF(2011 KB)
PDF(2011 KB)
中文信息学报 ›› 2016, Vol. 30 ›› Issue (5) : 80-88.
综述

基于路径与深度的同义词词林词语相似度计算

  • 陈宏朝,李 飞,朱新华,马润聪
作者信息 +

A Path and Depth—Based Approach to Word
Semantic Similarity Calcalation in CiLin

  • CHEN Hongchao,LI Fei,ZHU Xinhua, MA Runcong
Author information +
History +

摘要

该文提出了一种基于路径与深度的同义词词林词语语义相似度计算方法。该方法通过两个词语义项之间的最短路径以及它们的最近公共父结点在层次树中的深度计算出两个词语义项的相似度。在处理两个词语义项的最短路径与其最近公共父结点的深度时,为提高路径与深度计算的合理性,为分类树中不同层之间的边赋予不同的权值,同时通过两个义项在其最近公共父结点中的分支间距动态调节词语义项间的最短路径,从而平衡两个词语的相似度。该方法修正了目前相关算法只能得出几个固定的相似度值,所有最近公共父结点处于同一层次的义项对之间的相似度都相同的不合理现象,使词语语义相似度的计算结果更为合理。实验表明,该方法对MC30词对的相似度计算值与人工判定值相比,取得了0.856的皮尔逊相关系数,该结果高于目前大多数词语相似度算法与MC30的相关度。

Abstract

In this paper, we propose a word semantic similarity approach based on the path and depth in CiLin. This approach exploits the shortest path between two word senses and the depth of their lowest common parent node in the hierarchy tree to calculate the semantic similarity between two word senses. In order to improve the rationality of calculating the path and depth, we assign different weights to the edges between the different layers in classification tree, while dynamically adjusting the shortest path between two senses through their branch interval in the lowest common parent node. The experiments show that the correlation coefficient between the human judgments in MC30 dataset and the computational measures presented in this approach is 0.856, which is higher than those of most of current semantic similarity algorithms.

关键词

同义词词林 / 路径 / 深度 / 分支间距 / 最近公共父结点

Key words

CiLin / path / depth / branch interval / lowest common parent node

引用本文

导出引用
陈宏朝,李 飞,朱新华,马润聪. 基于路径与深度的同义词词林词语相似度计算. 中文信息学报. 2016, 30(5): 80-88
CHEN Hongchao,LI Fei,ZHU Xinhua, MA Runcong. A Path and Depth—Based Approach to Word
Semantic Similarity Calcalation in CiLin. Journal of Chinese Information Processing. 2016, 30(5): 80-88

参考文献

[1] 葛斌,李芳芳,郭丝路,等大权. 基于知网的词汇语义相似度计算方法研究[J].计算机应用研究,2010,09: 3329-3333.
[2] G A Miller, C Fellbaum. Semantic network of English [M], B. Levin (Ed.), lexical & conceptual semantics, Amsterdam: Elsevier Science Publishers, 1991.
[3] C F Baker. The BerkeleyFrameNet project[C]// Proceedings of the COLING-ACL, Montreal, Canada, 1998: 86-90.
[4] S D Richardson, W B Dolan.MindNet: Acquiring and structuring semantic information from text[C]// Proceedings of COLING-ACL, Quebec, Canada, 1998: 1098-1102.
[5] 董振东.语义关系的表达和知识系统的建造[ J ].语言文字应用, 1998, 03: 76-83.
[6] 梅家驹, 等. 同义词词林[M]. 上海: 上海辞书出版社出版, 1983.
[7] 于江生,俞士汶.中文概念词典的结构[ J ].中文信息学报, 2002,16(4): 12-20.
[8] Dekang Lin. An Information Theoretic Definition of Similarity Semantic distance in WordNet[C]//Proceedings of the Fifteenth International Conference on Machine Learning, Madison, Wisconsin, USA,1998: 928-933.
[9] 张亮,尹存燕,陈家骏.基于语义树的中文词语相似度计算与分析[J].中文信息学报,2010,24(6): 23-29.
[10] 刘群,李素建.基于《知网》的词汇语义相似度计算[C].台北: 第三届汉语词汇语义学研讨会, 2002: 59-76.
[11] 江敏,肖诗斌,王弘蔚,等. 一种改进的基于《知网》的词语语义相似度计算[J]. 中文信息学报,2008,22(5): 84-89.
[12] 梅立军,周强,臧路,等. 知网与同义词词林的信息融合研究[J].中文信息学报,2005,19(1): 63-70.
[13] Mohamed AliHadj Taieb, Mohamed Ben Aouicha, Abdelmajid Ben Hamadou. A new semantic relatedness measurement using wordnet features [J]. Knowledge and Information Systems, 2014, 41(2): 467-497.
[14] L Meng, J Gu, Z Zhou. A new model of information content based on concept's topology for measuring semantic similarity in WordNet [J]. Journal of Grid & Distributed Computing, 2012, 5(3): 81-96.
[15] Z Zhou, Y Wang, J Gu. A new model of information content for semantic similarity in WordNet[C]//Proceedings of the International Conference on the Future Generation Communication and Networking Symposia, Sanya, China, 2008: 85-89.
[16] 田久乐,赵蔚.基于同义词词林的词语相似度计算方法[J].吉林大学学报(信息科学版),2010,06: 602-608.
[17] 耿端.基于同义词词林的评分在中医案例自测系统中的应用[D]. 西北大学硕士学位论文,2013.
[18] 刘丹丹,彭成,钱龙华,等.《同义词词林》在中文实体关系抽取中的作用[J]. 中文信息学报,2014,28(2): 91-99.
[19] Z. Wu, M. Palmer. Verbs semantics and lexical selection [C]// Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics, ACL'94, Association for Computational Linguistics, Stroudsburg, PA, USA, 1994: 133-138.
[20] D.Hao, W. Zuo, T. Peng. An approach for calculating semantic similarity between words using wordnet [C]//Proceedings of the second International Conference on Digital Manufacturing and Automation, Zhangjiajie, China, 2011: 177-180.
[21] X. Liu, Y. Zhou, R.Zheng. Measuring semantic similarity in WordNet[C]//Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, China, 2007: 3431-3435.
[22] G.A. Miller, W.G. Charles. Contextual correlates of semantic similarity [J]. Language and Cognitive Processes, 1991, 6 (1): 1-28.
[23] H. Rubenstein, J.B.Goodenough. Contextual correlates of synonymy[C]//Proceedings of the ACM8(10), 1965: 627-633.
[24] P. Resnik. Semantic Similarity in Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language [J]. Journal of Artificial Intelligence Research, 1999, 11: 95-130.
[25] J W Kim, K S Candan. CP/CV: Concept similarity mining without frequency information from domain describing taxonomies [C]//Proceedings of the 15th ACM international conference on Information and knowledge management, New York, USA, 2006: 483-492.
[26] A H T Mohamed,B A Mohamed, A B Hamadou. Ontology-based approach for measuring semantic similarity [J]. Journal of Engineering Applications of Artificial Intelligence, 2014,36: 238-261.

基金

国家自然科学基金(61363036,61462010)
PDF(2011 KB)

1380

Accesses

0

Citation

Detail

段落导航
相关文章

/