基于Markov逻辑网的虚假评论识别方法

行娟娟

PDF(1483 KB)
PDF(1483 KB)
中文信息学报 ›› 2016, Vol. 30 ›› Issue (5) : 94-100.
综述

基于Markov逻辑网的虚假评论识别方法

  • 行娟娟
作者信息 +

Fake Reviews Identification Based on Markov Logic Networks

  • XING Juanjuan
Author information +
History +

摘要

为解决虚假评论识别的问题,该文提出一种基于Markov逻辑网的虚假评论识别方法。首先,对虚假评论内容和评论者行为的特点进行分析,选取评论内容特征和评论者行为特征;然后,根据特征定义一阶逻辑谓词和逻辑公式,并介绍了权重学习和推理的过程;最后,进行了对比实验,结果表明该方法的虚假评论识别取得了较好的效果。

Abstract

In order to identify fake reviews, we propose a method of fake reviews identification based on Markov Logic Networks. Firstly, the characteristics of fake review content and reviewer behavior are analyzed,and the review content features and the reviewer behavior features are selected. Secondly, the predicates and the formulas are defined with the features,and the weight The experimental results and the inference are decriked. show that the proposed method has a good performance.

关键词

Markov逻辑网 / 虚假评论 / 权重学习 / 自适应聚类

Key words

Markov logic networks / fake review / weight learning / adaptive clustering

引用本文

导出引用
行娟娟. 基于Markov逻辑网的虚假评论识别方法. 中文信息学报. 2016, 30(5): 94-100
XING Juanjuan. Fake Reviews Identification Based on Markov Logic Networks. Journal of Chinese Information Processing. 2016, 30(5): 94-100

参考文献

[1] 任亚峰, 姬东鸿, 张红斌,等. 基于PU学习算法的虚假评论识别研究[J]. 计算机研究与发展,2015,52(3): 639-648.
[2] Rupesh K D, A K Singh. Identification of Fake Reviews Using New Set of Lexical and Syntactic Features[C]//Proceedings of the Sixth International Conference on Computer and Communication Technology 2015, 2015: 115-119.
[3] 汪建成, 严馨, 余正涛, 等. 基于主题-对立情感依赖模型的虚假评论检测方法[J]. 山西大学学报(自然科学版), 2015, 38(1): 31-38.
[4] S Banerjee, A Y Chua, J J Kim. Using supervised learning to classify authentic and fake online reviews[C]//Proceedings of the 9th International Conference on Ubiquitous Information Management and Communication, ACM, 2015: 88-94.
[5] J Li, M Ott, C Cardie, et al. Towards a general rule for identifying deceptive opinion spam[C]//Proceedings of the 52th Annual Meeting of the Association for Computational Linguistics, ACL 2014, Baltimore, Maryland, USA, 2014: 1566-1576.
[6] H Li, Z Chen, B Liu, et.al. Spotting fake reviews via collective positive-unlabeled learning[C]//Proceedings of the 2014 IEEE International Conference on Data Mining, ICDM 2014, Shenzhen, China, 2014: 899-904.
[7] J Li, M Ott, C Cardie. Identifying manipulated offerings on review portals[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, EMNLP 2013: 1933-1942.
[8] J Li, C Cardie, S Li. TopicSpam: a Topic-Model-Based Approach for Spam Detection[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, ACL 2013: 217-221.
[9] S Feng, R Banerjee, Y Choi. Syntactic Stylometry for Deception Detection[C]//Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, ACL 2012: 171-175.
[10] 刁宇峰, 杨亮, 林鸿飞. 基于LDA模型的博客垃圾评论发现[J]. 中文信息学报, 2011, 25(1): 41-47.
[11] A Mukherjee, A Kumar, B Liu, et.al. Spotting opinion spammers using behavioral footprints[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013: 632-640.
[12] Lim E P, Nguyen V A, Jindal N, et.al. Detecting Product Review Spammers Using Rating Behaviors[C]//Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM 2010: 939-948.
[13] 邱云飞, 王建坤, 邵良杉, 等.基于用户行为的产品垃圾评论者检测研究[J].计算机工程,2012,38(11): 254-257.
[14] 宋海霞, 严馨, 余正涛, 等. 基于自适应聚类的虚假评论检测[J]. 南京大学学报(自然科学), 2013, 49(4): 433-438.
[15] Richardson M, Domingos P. Markov logic networks[J]. Machine Learning, 2006, 62(1-2): 107-136.
[16] Parag Singla, Pedro Domingos. Discriminative training of markov logic networks[C]//Proceedings of the 20th National Conference on Articial Intelligence, Pittsburgh, Pennsylvania, 2005: 868-873.
[17] Singla P, Domingos P. Memory-Efficient inference in relational domains[C]//Proceedings of the 21st National Conference on Artificial Intelligence, Boston, Massachusetts, 2006: 488-493.

基金

国家自然科学基金(61103242)
PDF(1483 KB)

Accesses

Citation

Detail

段落导航
相关文章

/