限定领域口语对话系统中超出领域话语的对话行为识别

黄沛杰;王俊东;柯子烜;林丕源

PDF(3223 KB)
PDF(3223 KB)
中文信息学报 ›› 2016, Vol. 30 ›› Issue (6) : 182-189.
综述

限定领域口语对话系统中超出领域话语的对话行为识别

  • 黄沛杰;王俊东;柯子烜;林丕源
作者信息 +

Dialogue Act Recognition for Out-of-Domain Utterancesin Spoken Dialogue System

  • HUANG Peijie; WANG Jundong; KE Zixuan; LIN Piyuan
Author information +
History +

摘要

由于领域外话语具有内容短小、表达多样性、开放性及口语化等特点,限定领域口语对话系统中超出领域话语的对话行为识别是一个挑战。该文提出了一种结合外部无标签微博数据的随机森林对话行为识别方法。该文采用的微博数据无需根据应用领域特点专门收集和挑选,又与口语对话同样具有口语化和表达多样性的特点,其训练得到的词向量在超出领域话语出现超出词汇表字词时提供了有效的相似性扩展度量。随机森林模型具有较好的泛化能力,适合训练数据有限的分类任务。中文特定领域的口语对话语料库测试表明,该文提出的超出领域话语的对话行为识别方法取得了优于最大熵、卷积神经网络等短文本分类研究进展中的方法的效果。

Abstract

Due to the short length, diversity, openness and colloquial features of out-of-domain (OOD) utterances, such dialogue act (DA) recognition for OOD utterances remains a challenge in domain specific spoken dialogue system. This paper proposes an effective DA recognition method using the random forest and external information. The unlabeled Weibo dataset, which is not domain specific yet possesses the similar characteristic of colloquialism and diversity with the spoken dialogue, is used to train the word embedding by unsupervised learning method. The trained word embedding provides similar computing for out of vocabulary (OOV) words in the training and test OOD utterances. The evaluation on a Chinese dialogue corpus in restricted domain shows that the proposed method outperforms some state-of-the-art short text classification methods for DA recognition.

关键词

对话行为识别 / 超出领域话语 / 随机森林 / 词向量 / 口语对话系统

Key words

dialogue act recognition / out-of-domain utterance / random forest / word embedding / spoken dialogue system
 
/   /   /
 
/   /   /
 
/   /  

引用本文

导出引用
黄沛杰;王俊东;柯子烜;林丕源. 限定领域口语对话系统中超出领域话语的对话行为识别. 中文信息学报. 2016, 30(6): 182-189
HUANG Peijie; WANG Jundong; KE Zixuan; LIN Piyuan. Dialogue Act Recognition for Out-of-Domain Utterancesin Spoken Dialogue System. Journal of Chinese Information Processing. 2016, 30(6): 182-189

参考文献

[1] Price P J. Evaluation of spoken language systems: the ATIS domain[C]//Proceedings of DARPA Workshop on Speech and Natural Language, Hidden Valley, PA, 1990.
[2] Gorin A, Riccardi G, Wright J.How may I help you?[J]. Speech Communication,1997, 23(1-2): 113-127.
[3] Zue V, Seneff S, Glass J, et al. JUPITER: a telephone-based conversational interface for weather information[J]. IEEE Transactions on Speech and Audio Processing, 2000, 8(1): 85-96.
[4] Durston P, Farrell M, Attwater D, et al. OASIS natural language call steering trial[C]//Proceedings of 7th European Conference on Speech Communication and Technology (Eurospeech 2011), 2001: 1323-1326.
[5] 张琳, 高峰, 郭荣, 等. 汉语股票实时行情查询对话系统[J]. 计算机应用, 2004, 24(7): 61-63.
[6] 黄寅飞, 郑方, 燕鹏举, 等. 校园导航系统EasyNav的设计与实现[J].中文信息学报, 2001, 15(4): 35-40.
[7] Reichel C S, Sohn J, Ehrlich U, et al. Out-of-domain spoken dialogs in the car: a WoZ study[C]//Proceedings of the 15th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL 2014), 2014: 12-21.
[8] Pappu A, Rudnicky A. The structure and generality of spoken route instructions[C]//Proceedings of the 13th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL 2012), 2012: 99-107.
[9] Huang P J, Lin X M, Lian Z Q, et al. Ch2R: a Chinese chatter robot for online shopping guide[C]//Proceedings of the 3rd CIPS-SIGHAN Joint Conference on Chinese Language Processing (CLP-2014), 2014: 26-34.
[10] 王俊东, 黄沛杰, 林仙茂等. 限定领域口语对话系统中超出领域话语的协处理方法[J].中文信息学报, 2015, 29(5): 194-203.
[11] Ameixa D, Coheur L, Fialho P, et al. Luke, I am your father: dealing with out-of-domain requests by using movies subtitles [J]. IVA 2014. LNCS (LNAI), vol. 8637, pp. 13-21. Springer, Heidelberg (2014)
[12] Novielli N. and Strapparava C. The role of affect analysis in dialogue act identification [J]. IEEE Transactions on Affective Computing, 2013, 6(1): 1-14.
[13] Lane I R, Kawahara T, Matsui T, et al. Out-of-domain utterance detection using classification confidences of multiple topics[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(1): 150-161.
[14] Tür G, Deoras A, Hakkani-Tür D. Detecting out-of-domain utterances addressed to a virtual personal assistant[C]//Proceedings of the 15th Annual Conference of the International Speech Communication Association (INTERSPEECH 2014), 2014: 283-287.
[15] Celikyitmaz A, Hakkani-Tür D, Tür G. Approximate inference for domain detection in spoken language understanding[C]//Proceedings of the 12th Annual Conference of the International Speech Communication Association (INTERSPEECH 2011), 2011: 1293-1296.
[16] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1), 5-32.
[17] Chen M G, Jin X M, Shen D. Short text classification improved by learning multigranularity topics [C]//Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), 2011: 1776-1781.
[18] Silva J, Coheur L, Mendes A C, et al. From symbolic to sub-symbolic information in question classification. Artificial Intelligence Review, 2011, 35(2): 137-154.
[19] 马成龙, 姜亚松, 李艳玲,等. 基于词矢量相似度的短文本分类[J]. 山东大学学报: 理学版, 2014(12): 18-22.
[20] Kim Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 19th Conference on Empirical Methods in Natural Language Processing (EMNLP 2014), 2014: 1746-1751.
[21] Kenter T, Rijke M D. Short text similarity with word embeddings[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management (CIKM 2015), 2015: 1411-1420.
[22] Phan X H, Nguyen L M, Horiguchi S. Learning to classify short and sparse text & web with hidden topics from large-scale data collections[C]//Proceedings of the 17th International World Wide Web Conference (WWW 2008), 2008: 91-100.
[23] Louwerse M M, Crossley S A. Dialog act classifi-cation using n-gram algorithms[C]//Proceedings of
19th Florida Artificial Intelligence Research Society Conference (FLAIRS 2006), 2006: 758-763.
[24] Levin L, Langley C, Lavie A, et al. Domain specific speech acts for spoken language translation[C]//Proceedings of 4th SIGdial Workshop on Discourse and Dialogue (SIGDIAL 2003), 2003.
[25] Irie Y, Matsubara S, Kawaguchi N, et al. Speech intention understanding based on decision tree learning[C]//Proceedings of 8th International Conference on Spoken Language Processing (INTERSPEECH 2004- ICSLP), 2004.
[26] Lan K C, Shiu H K, Pong Luk Robert Wing, et al. Dialogue act recognition using maximum entropy[J]. Journal of the American Society for Information Science & Technology, 2008, 59(6): 859-874.
[27] Král P, Cerisara C, Klecková J. Combination of classifiers for automatic recognition of dialog acts[C]//Proceedings of 9th European Conference on Speech Communication and Technology (INTERSPEECH 2005- Eurospeech), 2005: 825-828.
[28] Lee S, Seo J. Korean speech act analysis system using hidden markov model with decision trees[J]. International Journal of Computer Processing of Oriental Languages, 2002, 15(03): 231-243.
[29] Zhou Y, Hu Q, Liu J, et al. Combining heterogeneous deep neural networks with conditional random fields for chinese dialogue act recognition[J]. Neurocomputing, 2015, 168(C): 408-417.
[30] Turian J, Ratinov L, Bengio Y. Word representations: a simple and general method for semi-supervised learning[C]//Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (ACL 2010), 2010: 384-394.
[31] Bengio Y, Ducharme R, Vincent P, et al. A neural probabilistic language model[J]. Journal of Machine Learning Research, 2003, (3): 1137-1155.
[32] Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in Vector Space[C]//Proceedings of the 1st International Conference on Learning Representations (ICLR 2013), 2013.
[33] Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 27th Annual Conference on Neural Information Processing Systems (NIPS 2013), 2013: 3111-3119.
[34] Morin F, Bengio Y. Hierarchical probabilistic neural network language model[C]//Proceedings of the International Workshop on Artificial Intelligence and Statistics (AISTATS 2005), 2005: 246-252.

基金

国家自然科学基金(71472068);广东省大学生科技创新培育专项项目(pdjh2016b0087)
PDF(3223 KB)

657

Accesses

0

Citation

Detail

段落导航
相关文章

/