随着社交网络的快速发展,用户在使用社交应用时会产生大量有价值的数据。通过对社交网络进行数据挖掘,发现隐藏在数据中关联用户与物品之间的偏好关系。然后对用户建模分析,选择合适的推荐引擎进行个性化物品推荐,这是一个非常有价值的研究方向。该文重点研究矩阵分解算法对处理大规模用户与物品评分矩阵的推荐效果,为了提高推荐的准确度展开了对用户社交关系和隐性反馈的研究,在组合预测模型中加入社交关系、人口统计学信息配置项、用户的消费记录等隐因子项,通过实验验证了扩展之后的混合预测模型在RMSE值上比SVD算法降低了0.259 475,在推荐性能有较大幅度的提高。
Abstract
With the development of social network, there is a large amount of valuable information produced by social network users. This paper focused on the personification recommender system based on matrix factorization. In order to improve the recommender systems, we study the user social relationship and the implicit feedback of user. We add in the matrix factorization optimization function by a social regularization, a demographic information configuration item, and the consumer records as items latent factor bias. Experiments indicates a decrease in RMSE by 0.259475 achieved by the proposed method than SVD algorithm.
关键词
矩阵分解 /
个性化推荐系统 /
社交网络 /
用户建模
{{custom_keyword}} /
Key words
matrix factorization /
personalized recommender system /
social network /
user mode
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 慕福楠. 面向微博用户的推荐多样性研究[D]. 哈尔滨工业大学硕士学位论文, 2013.
[2] 石丽丽. 面向微博用户的内容与好友推荐算法研究与实现[D]. 北京邮电大学硕士学位论文, 2014.
[3] 张晓婕. 基于微博用户兴趣模型的个性化广告推荐研究[D]. 华东师范大学硕士学位论文, 2014.
[4] Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation[J]. the Journal of machine learning research, 2003, 3: 993-1022.
[5] 王利. 基于数据挖掘技术的微博营销系统的设计与实现[D]. 华中科技大学硕士学位论文, 2013.
[6] Pu L, Faltings B. Understanding and improving relational matrix factorization in recommender systems[C]//Proceedings of the 7th ACM conference on Recommender systems. ACM, 2013: 41-48.
[7] Liu X,Aberer K. SoCo: a social network aided context-aware recommender system[C]//Proceedings of the 22nd international conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2013: 781-802.
[8] Pagare R, Patil S A. Social recommender system by embedding social regularization[C]//Proceedings of Advance Computing Conference (IACC), 2014 IEEE International. IEEE, 2014: 471-476.
[9] Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks[C]//Proceedings of the fourth ACM conference on Recommender systems. ACM, 2010: 135-142.
[10] Ma H, Zhou T C,Lyu M R, et al. Improving recommender systems by incorporating social contextual information[J]. ACM Transactions on Information Systems (TOIS), 2011, 29(2): 9.
[11] Manzato M G, Goularte R. A multimedia recommender system based on enriched user profiles[C]//Proceedings of the 27th Annual ACM Symposium on Applied Computing. ACM, 2012: 975-980.
[12] 崔春生. 不同推荐系统输入的聚类实现[J]. 应用泛函分析学报, 2014, 16(2): 121-128.
[13] Xiong X B, Zhou G, Huang Y Z, et al. Dynamic evolution of collective emotions in social networks: a case study of Sina weibo[J]. Science China Information Sciences, 2013, 56(7): 1-18.
[14] 项亮. 推荐系统实践[M]. 北京: 人民邮电出版社, 2012.203-204.
[15] Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks[C]//Proceedings of the fourth ACM conference on Recommender systems. ACM, 2010: 135-142.
[16] Rokach L, Shapira B, Kantor P B. Recommender systems handbook[M]. New York: Springer, 2011.
[17] Jolliffe I. Principal component analysis[M]. John Wiley & Sons, Ltd, 2002.
[18] Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems[J]. Computer, 2009 (8): 30-37.
[19] 余秋宏. 基于因子分解机的社交网络关系推荐研究[D]. 北京邮电大学硕士学位论文, 2013.
[20] Tenenbaum J B, Freeman W T. Separating style and content with bilinear models[J]. Neural computation, 2000, 12(6): 1247-1283.
[21] Funk S. Netflix update: Try this at home[DB/OL], http://sifter.org/simon/;journal/20061211.html(2006).
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(61371116)
{{custom_fund}}