基于依存句法分析的复合事实型问句分解方法

刘 雄;张 宇;张伟男;刘 挺

PDF(1962 KB)
PDF(1962 KB)
中文信息学报 ›› 2017, Vol. 31 ›› Issue (3) : 140-146.
信息检索与问答系统

基于依存句法分析的复合事实型问句分解方法

  • 刘 雄;张 宇;张伟男;刘 挺
作者信息 +

A Decomposition Method for Complex Factoid Questions Based on Dependency Parsing

  • LIU Xiong; ZHANG Yu; ZHANG Weinan; LIU Ting
Author information +
History +

摘要

问答系统一直以来都是自然语言处理领域的研究热点之一,然而现有问答系统技术对复合事实型问句的处理效果并不完美。为了增强问答系统理解复合事实型问句的能力,该文提出了一种针对复合事实型问句的分解方法: 使用基于树核的支持向量机对问句的分解类别进行识别,进而使用基于依存句法分析的方法生成分解结果。实验结果显示,在我们所构建的高质量问句分解语料库中,我们的方法对问句分解类别进行了准确的识别,同时也可以较好地生成嵌套型问句的子问句。

Abstract

Question answering systems have been one of the hot research areas of natural language processing for a long time. To enhance the ability of analyzing complex factoid questions in question answering systems, we presented a novel method to decompose complex factoid questions: using a tree kernel based support vector machine to recognize decomposition categories of questions, and generating decomposition results with a dependency parsing based method. The evaluation shows that based on the high quality question decomposition corpus we had built, our method recognizes question decomposition categories with high performance and generated sub-question series with high quality, especially for the nested-typeones.

关键词

问句分解 / 复合事实型问句 / 问句理解 / 问答系统 / 自然语言处理

Key words

question decomposition / complex factoid question / question analysis / question answering system / natural language processing

引用本文

导出引用
刘 雄;张 宇;张伟男;刘 挺. 基于依存句法分析的复合事实型问句分解方法. 中文信息学报. 2017, 31(3): 140-146
LIU Xiong; ZHANG Yu; ZHANG Weinan; LIU Ting. A Decomposition Method for Complex Factoid Questions Based on Dependency Parsing. Journal of Chinese Information Processing. 2017, 31(3): 140-146

参考文献

[1] Ferrucci David, Brown Eric, Chu-Carroll Jennifer, et al. Building Watson: An Overview of the DeepQA Project[J]. AI Magazine, 2010, 31(3): 59-79.
[2] Bu Fan, Zhu Xingwei, Hao Yu, et al. Function-based question classification for general QA[C]//Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2010: 1119-1128.
[3] Duan Huizhong, Cao Yunbo, Lin Chin-Yew, et al. Searching Questions by Identifying Question Topic and Question Focus.[C]//Proceedings of Annual Meeting of the Association for Computational Linguistics Human Language Tchnologies. 2008: 156-164.
[4] Carpineto Claudio, Romano Giovanni. A Survey of Automatic Query Expansion in Information Retrieval[J]. ACM Computing Surveys, ACM, 2012, 44(1): 1-50.
[5] Androutsopoulos Ion, Malakasiotis Prodromos. A Survey of Paraphrasing and Textual Entailment Methods[J]. Journal of Artificial Intelligence Research, 2010: 135-187.
[6] Zhang W, Ming Z, Zhang Y, et al. The Use of Dependency Relation Graph to Enhance the Term Weighting in Question Retrieval.[C]//COLING. 2012: 3105-3120.
[7] Kalyanpur Aditya, Patwardhan Siddharth, Boguraev Branimir K, et al. Fact-based question decomposition in DeepQA[J]. IBM Journal of Research and Development, 2012, 56(3,4): 13: 1-13: 11.
[8] Katz Boris, Borchardt Gary, Felshin Sue. Syntactic and Semantic Decomposition Strategies for Question Answering from Multiple Resources[C]//Proceedings of the AAAI 2005 workshop on inference for textual question answering. 2005: 35-41.
[9] Liu Y, Li S, Cao Y, et al. Understanding and summarizing answers in community-based question answering services[C]//Proceedings of the 22nd International Conference on Computational Linguistics-Volume 1. Association for Computational Linguistics, 2008: 497-504.
[10] Croce Danilo, Moschitti Alessandro, Basili Roberto. Structured Lexical Similarity via Convolution Kernels on Dependency Trees[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2011: 1034-1046.
[11] McDonald Ryan, Pereira Fernando, Ribarov Kiril, et al. Non-projective Dependency Parsing using Spanning Tree Algorithms[C]//Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing. Morristown, NJ, USA: Association for Computational Linguistics, 2005: 523-530.
[12] Che Wanxiang, Li Zhenghua, Li Yongqiang, et al. Multilingual Dependency-based Syntactic and Semantic Parsing[C]//Proceedings of the Thirteenth Conference on Computational Natural Language Learning: Shared Task. Association for Computational Linguistics, 2009: 49-54.
[13] Fleiss Joseph L. Measuring Nominal Scale Agreement among Many Raters.[J]. Psychological Bulletin, 1971, 76(5): 378-382.
[14] Socher Richard, Bauer John, Manning Christopher D, et al. Parsing With Compositional Vector Grammars[C]//Proceedings of the 51th Annual Meeting of the Association for Computational Linguistics. 2013.
[15] Che Wanxiang, Li Zhenghua, Liu Ting. LTP: a Chinese Language Technology Platform[C]//Proceedings of the 23rd International Conference on Computational Linguistics: Demonstrations. Association for Computational Linguistics, 2010: 13-16.
[16] 张健. 问答系统中问题拆分技术研究[D]. 哈尔滨工业大学硕士学位论文, 2013.

基金

国家自然科学基金(61472105)
PDF(1962 KB)

Accesses

Citation

Detail

段落导航
相关文章

/