一种融合用户主题兴趣与用户行为的文档推荐方法

张桂平;翟顺龙;王裴岩

PDF(4138 KB)
PDF(4138 KB)
中文信息学报 ›› 2017, Vol. 31 ›› Issue (3) : 147-155.
信息检索与问答系统

一种融合用户主题兴趣与用户行为的文档推荐方法

  • 张桂平;翟顺龙;王裴岩
作者信息 +

A Document Recommendation Method by Combining of Topics and Behaviors

  • ZHANG Guiping; ZHAI Shunlong; WANG Peiyan
Author information +
History +

摘要

针对单一角度描述用户兴趣存在片面性的问题,该文提出一种融合用户主题兴趣和用户行为的文档推荐方法。一方面从主题兴趣的角度,构建反映用户主题兴趣的主题向量用户模型;另一方面从用户行为的角度,构建反映用户行为兴趣的打分矩阵用户模型。然后,基于上述用户模型提出了两种文档推荐方法,并采用线性加权的方式融合这两种方法,从而实现对用户主题兴趣与用户行为的融合。实验结果表明,该方法的推荐结果好于协同过滤推荐方法和基于内容的推荐方法。

Abstract

This paper proposes a method by combining the topic and the behavior to describe the user interest. On the one hand, from the perspective of the topics, a topic vector model is constructed to reflect the users interest in topic. On the other hand, from the perspective of behavior, a score matrix model is constructed to reflect the users interest in behavior. Then, based on two user models, two document recommendation methods are constructed, and then combined by the linear weighted method. Experimental results show that the proposed method is better than the collaborative filtering recommendation method and the content-based recommendation method.

关键词

用户模型 / 主题兴趣 / 用户行为 / 文档推荐

Key words

user model / topic interest / user behavior / document recommendation

引用本文

导出引用
张桂平;翟顺龙;王裴岩. 一种融合用户主题兴趣与用户行为的文档推荐方法. 中文信息学报. 2017, 31(3): 147-155
ZHANG Guiping; ZHAI Shunlong; WANG Peiyan. A Document Recommendation Method by Combining of Topics and Behaviors. Journal of Chinese Information Processing. 2017, 31(3): 147-155

参考文献

[1] 孟祥武, 纪威宇, 张玉洁.大数据环境下的推荐系统[J].北京邮电大学学报, 2015, 38(2): 1-15.
[2] Pazzani M J, Billsus D. Content-based recommendation systems[M]. The Adaptive Web. Springer Berlin Heidelberg, 2007: 325-341.
[3] Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms[C]// Proceedings of the 10th international conference on World Wide Web. ACM, 2001: 285-295.
[4] Blei D, Ng A, Jordan M.Latent dirichlet allocation[J].The Journal of Machine Learning Research, 2003, 1(9): 993-1022.
[5] Blei D.Probabilistic topic models[J].Communications of the ACM,2010, 55(6): 77-84.
[6] 赵鹏, 蔡庆生, 王清毅.一种用于文章推荐系统中的用户模型表示方法[J].计算机技术与发展, 2007, 17(1): 4-5.
[7] Han Peng, Xie Bo, Yang Fan. A scalable P2P recommender system based on distributed collaborative filtering[J].Expert Systems with Applications, 2004, 27(2): 203-210.
[8] Schafer J B, Dan F, Herlocker J, et al.Collaborative filtering recommender systems[M].The Adaptive Web Springer: Berlin Heidelberg, 2007: 291-324.
[9] Papagelis M, Plexousakis D. Qualitative analysis of userbased and item-based prediction algorithms for recommendation systems, CIA 2004.[C]//International Journal of Engineering Applications of Artificial Intelligence. 2004: 152-166.
[10] 许海玲, 吴潇, 李晓东, 等.互联网推荐系统比较[J].软件学报, 2009, 20(2): 350-362.
[11] Liu Duenren, Lai Chinhui, Huang Chiuwen. Document recommendation for knowledge sharing in personal folder environments[J].Journal of Systems and Software, 2008, 81(8): 1377-1388.
[12] Lazcorreta E, Botella F, Fernández-Caballero A. Towards personalized recommendation by two-step modified Apriori data mining algorithm[J].Expert Systems with Applications, 2008, 35(3): 1422-1429.
[13] 李忠俊, 周启海, 帅青红.一种基于内容和协同过滤同构化整合的推荐系统模型[J].计算机科学, 2009, 36(12): 142-145.
[14] Yu K, Xu X,Schwaighofer A, et al. Removing redundancy and inconsistency in memory-based collaborative filtering[C]//Proceedings of the 11th International Conference on Information and Knowledge Management. New York: ACM Press, 2002: 52-59.
[15] Chen J, Nairn R, Nelson L, et al. Short and tweet: experiments on recommending content from information streams[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Atlanta: ACM, 2010: 1185-1194.
[16] 徐戈, 王厚峰.自然语言处理中主题模型的发展[J].计算机学报, 2011, 34(8): 1423-1436.
[17] 李贵林, 杨禹琪, 高星, 等.企业搜索引擎个性化表示与结果排序算法研究[J].计算机研究与发展, 2014, 51(1): 206-214.
[18] 唐晓丽, 白宇, 张桂平, 等.一种面向聚类的文本建模方法[J].山西大学学报(自然科学版),2014, 37(4): 596-600.

基金

国家科技支撑计划(2015BAH20F01);国防科研基础项目(A0520131003)
PDF(4138 KB)

602

Accesses

0

Citation

Detail

段落导航
相关文章

/