新浪微博谣言检测研究

祖坤琳;赵铭伟;郭 凯;林鸿飞

PDF(2029 KB)
PDF(2029 KB)
中文信息学报 ›› 2017, Vol. 31 ›› Issue (3) : 198-204.
情感分析与社会计算

新浪微博谣言检测研究

  • 祖坤琳;赵铭伟;郭 凯;林鸿飞
作者信息 +

Research on The Detection of Rumor on Sina Weibo

  • ZU Kunlin; ZHAO Mingwei; GUO Kai; LIN Hongfei
Author information +
History +

摘要

社会网络信息的可信度问题近年来受到了相当大的关注。谣言的散播可能造成社会恐慌,引发信任危机。在国内,新浪微博用户量的快速增长,使其成为了谣言传播的温床。及时清理在新浪微博中传播的谣言,对于社会的和谐发展有着现实的意义。该文以新浪微博为背景,将谣言检测任务作为分类问题,首次提出将微博评论的情感倾向作为谣言检测分类器的一项特征。实验结果表明,引入评论的评论情感倾向特征后,使得谣言检测的分类结果得到了可观的提升。

Abstract

The problem of reliability of social network information has received considerable attention in recent years. Malicious rumors may cause social panic, even triggering a crisis of confidence. In China, the rapid growth of Sina Weibo user quantity paves the way for the spread of rumors. It has significant practical meaning for the harmonious society to clean up rumors in Sina Weibo in time. Here we consider the rumor detection task as a classification problem and propose a method by using the emotional tendencies of micro-blog comments as a feature. The experimental results show that the comments emotion brings a considerable improvement.

关键词

新浪微博 / 谣言检测 / SVM / 情感计算

Key words

Sina Weibo / rumor detection / SVM / affective computing

引用本文

导出引用
祖坤琳;赵铭伟;郭 凯;林鸿飞. 新浪微博谣言检测研究. 中文信息学报. 2017, 31(3): 198-204
ZU Kunlin; ZHAO Mingwei; GUO Kai; LIN Hongfei. Research on The Detection of Rumor on Sina Weibo. Journal of Chinese Information Processing. 2017, 31(3): 198-204

参考文献

[1] 蒋盛益, 陈东沂, 庞观松, 等. 微博信息可信度分析研究综述[J]. 图书情报工作, 2013, 57(12): 136-142.
[2] Ratkiewicz J, Conover M, Meiss M, et al. Detecting and tracking the spread of astroturf memes in microblog streams[J]. arXiv preprint arXiv: 1011.3768, 2010.
[3] Qazvinian V, Rosengren E, Radev D R, et al. Rumor has it: identifying misinformation in microblogs[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2011: 1589-1599.
[4] 谭超. 微博谣言分析及新浪辟谣机制[J]. 新闻实践, 2011 (9): 62-65.
[5] Yang F, Liu Y, Yu X, et al. Automatic detection of rumor on Sina Weibo[C]//Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics. ACM, 2012: 13.
[6] Sun S, Liu H, He J, et al. Detecting event rumors on Sina Weibo automatically[C]//Proceedings of Web Technologies and Applications. Springer Berlin Heidelberg, 2013: 120-131.
[7] Castillo C, Mendoza M, Poblete B. Information credibility on twitter[C]//Proceedings of the 20th international conference on World wide web. ACM, 2011: 675-684.
[8] Yuen R W M, Chan T Y W, Lai T B Y, et al. Morpheme-based derivation of bipolar semantic orientation of Chinese words[C]//Proceedings of the 20th international conference on Computational Linguistics. Association for Computational Linguistics, 2004: 1008.
[9] Turney P D, Littman M L. Measuring praise and criticism: inference of semantic orientation from association[J]. ACM Transactions on Information Systems (TOIS), 2003, 21(4): 315-346.
[10] Riloff E, Wiebe J. Learning extraction patterns for subjective expressions[C]//Proceedings of the 2003 conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2003: 105-112.
[11] 朱嫣岚, 闵锦, 周雅倩, 等. 基于 HowNet 的词汇语义倾向计算 [J]. 中文信息学报, 2006, 20(1): 14-20.
[12] 乔春庚, 孙丽华, 吴韶, 等. 基于模式的中文倾向性分析研究[C]. 第一届中文倾向性分析评测研讨会, 2008: 21-31.
[13] Wiebe J, Wilson T, Bruce R, et al. Learning subjective language[J]. Computational linguistics, 2004, 30(3): 277-308.
[14] Yu H, Hatzivassiloglou V. Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences[C]//Proceedings of the 2003 conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2003: 129-136.
[15] 叶强, 张紫琼, 罗振雄. 面问互联网评论情感分析的中文主观性自动判别方法研究[J]. 信息系统学报,2007(1):79-91.
[16] 刁宇峰, 杨亮, 林鸿飞. 基于 LDA 模型的博客垃圾评论发现[J]. 中文信息学报, 2011, 25(1): 41-47.
[17] 黄铃, 李学明. 基于AdaBoost 的微博垃圾评论识别方法[J].计算机应用,2013,33(12):3563-3566.

基金

国家自然科学基金(61632011,61572102,61562080)
PDF(2029 KB)

Accesses

Citation

Detail

段落导航
相关文章

/