政治学研究一直是社会科学领域的热点研究方向。政治理论、比较政治、公共政策和国际政治等,这些经典的政治学研究课题吸引了大批的政治学学者。从传统政治学研究中的道德哲学和法理主义,到行为主义政治学研究中的科学方法论和定量分析,再到一些自然科学工作者开始涉足政治学领域,政治学的研究方法一直在发展与演变。该文在对传统政治学研究的方法进行简要总结的基础上,针对互联网时代,“大数据”驱动下的政治学研究,阐述了计算政治学的起源、定义及其主要的研究内容和方法,论述了目前研究的热点政治倾向性及政治观点识别、冲突观点检测、选举预测和分析可视化的研究进展。
Abstract
The study of politics has been a hot research spot in the field of social science, such as political theory, comparative politics, public policy, and international politics. From the moral philosophy and legal theory in the traditional politics, to the scientific methodology and quantitative analysis in behavioristic politics, further to the involvement of natural science researchers, the research methods in politics have been developing and evolving. After a brief summary of previous methods in political science research, this paper discusses the origin, definition and development of computational political science at the age of the Internet, especially in the era of big data. It reviews the progress of political orientation, opinion recognition, conflict point detection, election prediction and political analysis visualization.
关键词
计算政治学 /
计算社会科学 /
大数据 /
研究方法
{{custom_keyword}} /
Key words
computational political science /
computational social science /
big data /
research methodology
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杨光斌.政治学导论[M].北京: 中国人民大学出版社,2011.
[2] 王沪宁.西方政治学行为主义学派述评[J].复旦学报(社会科学版),1985,(2): 93-98.
[3] 谢宗范.西方政治学研究方法的逻辑发展[J].上海社会科学院学术季刊,1988,(4): 104-106.
[4] 叶娟丽.行为主义政治学方法论研究论纲[J].武汉大学学报(社会科学版),2002,55(5): 594-599.
[5] Political science[EB/OL].http://en.wikipedia.org/wiki/Political science.2014.
[6] Watts D J. A twenty-first century science[J]. Nature, 2007, 445(7127): 489-489.
[7] Lazer D, Pentland A S, Adamic L, et al. Life in the network: the coming age of computational social science[J]. Science (New York, NY), 2009, 323(5915): 721.
[8] Butz W P, Torrey B B. Some frontiers in social science[J]. Science, 2006, 312(5782): 1898-1900.
[9] Leilei Zhu. Computational Political Science Literature Survey[EB/OL]. http://www.personal.psu.edu/luz113/, 2010.
[10] 维克托·迈尔-舍恩伯格,肯尼斯·库克耶.盛杨燕,周涛,译.大数据时代[M].杭州: 浙江人民出版社,2013.
[11] Slapin J B, Proksch S O. A scaling model for estimating time-series party positions from texts[J]. American Journal of Political Science, 2008, 52(3): 705-722.
[12] Monroe B L, Colaresi M P, Quinn K M. Fightin′words: Lexical feature selection and evaluation for identifying the content of political conflict[J]. Political Analysis, 2008, 16(4): 372-403.
[13] Purpura S, Hillard D. Automated classification of congressional legislation[C]//Proceedings of the 2006 international conference on Digital government research. Digital Government Society of North America, 2006: 219-225.
[14] Thomas M, Pang B, Lee L. Get out the vote: Determining support or opposition from Congressional floor-debate transcripts[C]//Proceedings of the 2006 conference on empirical methods in natural language processing. Association for Computational Linguistics, 2006: 327-335.
[15] Quinn K M, Monroe B L, Colaresi M, et al. How to analyze political attention with minimal assumptions and costs[J]. American Journal of Political Science, 2010, 54(1): 209-228.
[16] Adamic L A, Glance N. The political blogosphere and the 2004 US election: divided they blog[C]//Proceedings of the 3rd international workshop on Link discovery. ACM, 2005: 36-43.
[17] Fowler J H. Connecting the Congress: A study of cosponsorship networks[J]. Political Analysis, 2006, 14(4): 456-487.
[18] Hans Noel. “A Social Networks Analysis of Internal Party Cleavages in Presidential Nominations, 1972\|2008”.[EB]/[OL]. 2009.Available at:http://works.bepress.com/hans_noel/9/.
[19] Koger G, Masket S, Noel H. Partisan webs: information exchange and party networks[J]. British Journal of Political Science, 2009, 39(03): 633-653.
[20] Han J, Kim Y. Obama Tweeting and Twitted: sotomayors nomination and health care reform[C]//Processings of the APSA 2009 Toronto Meeting Paper. 2009.
[21] Hindman M, Tsioutsiouliklis K, Johnson J A. Googlearchy: how a few heavily-linked sites dominate politics on the web[C]//Processings of the annual meeting of the Midwest Political Science Association. 2003, (4): 1-33.
[22] Jakulin A, Buntine W, et al. Analyzing the US Senate in 2003: Similarities, networks, clusters and blocs[J]. Political Analysis 2009, 17(3):291-310.
[23] Jaeger P T, Lin J, Grimes J M. Cloud computing and information policy: Computing in a policy cloud?[J]. Journal of Information Technology & Politics, 2008, 5(3): 269-283.
[24] Marchett Bowick M, Chambers N. Learning for microblogs with distant supervision: Political forecasting with twitter[C]//Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, 2012: 603-612.
[25] Balasubramanyan R, Cohen W W, Pierce D, et al. What pushes their buttons?: predicting comment polarity from the content of political blog posts[C]//Proceedings of the Workshop on Languages in Social Media. Association for Computational Linguistics, 2011: 12-19.
[26] Conover M D, Gonalves B, Ratkiewicz J, et al. Predicting the political alignment of twitter users[C]//Processings of the ieee third international conference on and 2011 ieee third international conference on social computing (socialcom). IEEE, 2011: 192-199.
[27] Abbott R, Walker M, Anand P, et al. How can you say such things?!?: Recognizing disagreement in informal political argument[C]//Proceedings of the Workshop on Languages in Social Media. Association for Computational Linguistics, 2011: 2-11.
[28] Greene S, Resnik P. More than Words: Syntactic Packaging and Implicit Sentiment[C]//Proceedings of Human Language Technologies: Conference of the North American Chapter of the Association of Computational Linguistics, Boulder, Colorado, USA. DBLP, 2009: 503\|511.
[29] Balasubramanyan R, Cohen W W, Pierce D, et al. Modeling polarizing topics: when do different political communities respond differently to the same news?[C]//Processings of the ICWSM. 2012.
[30] Fang Y, Si L, Somasundaram N, et al. Mining contrastive opinions on political texts using cross-perspective topic model[C]//Proceedings of the fifth ACM international conference on Web search and data mining. ACM, 2012: 63-72.
[31] Yano T, Smith N A. Whats Worthy of Comment? Content and Comment Volume in Political Blogs[C]//Processings of the ICWSM. 2010.
[32] Yano T, Cohen W W, Smith N A. Predicting response to political blog posts with topic models[C]//Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, 2009: 477-485.
[33] Sakaki T, Okazaki M, Matsuo Y. Earthquake shakes Twitter users: real-time event detection by social sensors[C]//Proceedings of the 19th international conference on World wide web. ACM, 2010: 851-860.
[34] Colbaugh R, Glass K. Early warning analysis for social diffusion events[J]. Security Informatics, 2012, 1(1): 1-26.
[35] Bermingham A, Smeaton A F. On Using Twitter to Monitor Political Sentiment and Predict Election Results[C]//Proceedings of the Workshop on Sentiment Analysis where AI meets Psychology (SAAIP). IJCNLP, 2011.
[36] Tumasjan A, Sprenger T O, Sandner P G, et al. Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment[J]. ICWSM, 2010, 10: 178-185.
[37] Skoric M, Poor N, Achananuparp P, et al. Tweets and votes: A study of the 2011 singapore general election[C]//Processings of the 2012 45th Hawaii International Conference on. IEEE, 2012: 2583-2591.
[38] Gayo-Avello D. “I Wanted to Predict Elections with Twitter and all I got was this Lousy Paper”--A Balanced Survey on Election Prediction using Twitter Data[J]. arXiv preprint arXiv: 1204.6441, 2012.
[39] 可视化. [EB]/[OL]. http://baike.baidu.com/view/69230.htm. 2014
[40] Johansson F, Brynielsson J, Horling P, et al. Detecting emergent conflicts through web mining and visualization[C]//Processings of the Intelligence and Security Informatics Conference (EISIC), 2011 European. IEEE, 2011: 346-353.
[41] 杨亮,林鸿飞,基于情感分布的微博热点事件发现,中文信息学报[J],2012,26(1): 84-90.
[42] 魏现辉,张绍武,杨亮,林鸿飞.基于加权SimRank 的跨领域文本倾向性分析[J].模式识别与人工智能, 2013,26(11): 1004-1009.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(60673039,60973068);国家高技术研究发展计划(863计划)(2006AA01Z151)
{{custom_fund}}