The Impact of Various Grained Subtopics on Search Result Diversification
HU Sha1, DOU Zhicheng2,3, WEN Jirong2,3
Author information+
1. College of Computer & Information Science, Southwest University, Chongqing 400715, China; 2. Information of School, Renmin University of China, Beijing 100086, China; 3. Beijing Key Laboratory of Big Data Management and Analysis Methods, Beijing 100086, China
The search result diversification re-ranks search results to cover as many user intents as possible in the top ranks. Most intent-aware diversification algorithms use subtopics to diversify results. Focuses on the granularity of subtopics, this paper investigates the performance of diversification algorithms by using subtopics with different granularities. Experimental results show that state-of-the-art diversification algorithms work better by using fine-grained subtopics.
HU Sha, DOU Zhicheng, WEN Jirong.
The Impact of Various Grained Subtopics on Search Result Diversification. Journal of Chinese Information Processing. 2017, 31(4): 165-173
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Bernard J Jansen, Amanda Spink, Tefko Saracevic. Real life, real users, and real needs: a study and analysis of user queries on the web[J]. Information Processing & Management, 2000,36(2): 207-227. [2] Dou Z, Song R, Wen J R. A large-scale evaluation and analysis of personalized search strategies[C]//Proceedings of WWW, 2007: 581-590. [3] Ruihua Song, Zhenxiao Luo, Jianyun Nie, et al. Identification of ambiguous queries in web search[J]. IPM, 2009: 45(2). [4] Rakesh Agrawal,Sreenivas Gollapudi, Alan Halverson, et al. Diversifying search results[C]//Proceedings of WSDM, 2009. [5] Saul Vargas, Pablo Castells, DavidVallet. Explicit relevance models in intent-oriented information retrieval diversification[C]//Proceedings of SIGIR, 2012: 75-84. [6] Rodrygo L T Santos, Craig Macdonald, Iadh Ounis. Exploiting query reformulations for web search result diversification[C]//Proceedings of WWW, 2010: 881-890. [7] Van Dang, W Bruce Croft. Diversity by proportionality: an election-based approach to search result diversification[C]//Proceedings of SIGIR, 2012: 65-74. [8] BenCarterette, Praveen Chandar. Probabilistic models of ranking novel documents for faceted topic retrieval[C]//Proceedings of CIKM, Hong Kong, China, 2009: 1287-1296. [9] Van Dang, W. Bruce Croft. Term level search result diversification[C]//Proceedings of SIGIR, 2013: 603-612. [10] Jaime Carbonell, Jade Goldstein. The use of MMR, diversity-based reranking for reordering documents and producing summaries[C]//Proceedings of SIGIR, 1998. [11] Chengxiang Zhai, John Lafferty. A risk minimization framework for information retrieval[J]. IPM, 2006: 42(1): 31-55. [12] Xiaojin Zhu, Andrew Goldberg, Jurgen Van Gael, et al. Improving diversity in ranking using absorbing random walks[C]//Proceedings of HLT-NAACL, 2007. [13] Benyu Zhang, Hua Li, Yi Liu, et al. Improving web search results using anity graph[C]//Proceedings of SIGIR, 2005: 504-511. [14] Karthik Raman, Paul N Bennett, Kevyn Collins-Thompson. Toward whole-session relevance: exploring intrinsic diversity in web search[C]//Proceedings of SIGIR, 2013. [15] Hai-Tao Yu, Fuji Ren. Search result diversification via filling up multiple knap-sacks[C]//Proceedings of CIKM, Shanghai, China, 2014: 609-618. [16] Shangsong Liang, Zhaochun Ren, Maarten de Rijke. Fusion helps diversification[C]//Proceedings of SIGIR, 2014: 303-312. [17] FilipRadlinski, Robert Kleinberg, Thorsten Joachims. Learning diverse rankings with multi-armed bandits[C]//Proceedings of ICML, 2008. [18] Zhicheng Dou, Sha Hu, Kun Chen, et al. Multi- dimensional search result diversification[C]//Proceedings of WSDM, Hong Kong, China, 2011: 475-484. [19] Jiyin He, Vera Hollink, Arjen de Vries. Combining implicit and explicit topic representations for result diversification[C]//Proceedings of SIGIR, 2012: 851-860. [20] Yisong Yue, Thorsten Joachims. Predicting diverse subsets using structural svms[C]//Proceedings of ICML, 2008. [21] Yadong Zhu, Yanyan Lan, Jiafeng Guo, et al. Learning for search result diversification[C]//Proceedings of SIGIR, 2014: 293-302. [22] Dawn Lawrie, W. Bruce Croft, Arnold Rosenberg. Finding topic words for hierarchical summarization[C]//Proceedings of SIGIR, New Orleans, Louisiana, USA, 2001: 349-357. [23] Zhicheng Dou, Sha Hu, Yulong Luo, et al. Finding dimensions for queries[C]//Proceedings of CIKM, 2011. [24] Yunhua Hu, Yanan Qian, Hang Li, et al. Mining query subtopics from search log data[C]//Proceedings of SIGIR, Portland, Ore-gon, USA, 2012: 305-314. [25] Shoaib Jameel, Wai Lam. An unsupervised topic segmentation model incorporating word order[C]//Proceedings of SIGIR, Dublin, Ireland, 2013: 203-212. [26] Olivier Chapelle, Donald Metlzer, Ya Zhang, et al. Expected reciprocal rank for graded relevance[C]//Proceedings of CIKM, Hong Kong, China, 2009: 621-630. [27] Charles L A Clarke,Maheedhar Kolla, Gordon V Cormack, et al. Novelty and diversity in information retrieval evaluation[C]//Proceedings of SIGIR, 2008: 659-666. [28] Charles L Clarke,Maheedhar Kolla, Olga Vechtomova. An eectiveness measure for ambiguous and underspecified queries[C]//Proceedings of ICTIR, 2009. [29] Tetsuya Sakai, Ruihua Song. Evaluating diversified search results using per-intent graded relevance[C]//Proceedings of SIGIR, Beijing, China, 2011: 1043-1052.