SCMF:一种融合多源数据的软约束矩阵分解推荐算法

满 彤,沈华伟,黄俊铭,程学旗

PDF(3841 KB)
PDF(3841 KB)
中文信息学报 ›› 2017, Vol. 31 ›› Issue (4) : 174-183.
信息检索与问答系统

SCMF:一种融合多源数据的软约束矩阵分解推荐算法

  • 满 彤,沈华伟,黄俊铭,程学旗
作者信息 +

SCMF: A Matrix Factorization Model With Soft

  • MAN Tong, SHEN Huawei, HUANG Junming, CHENG Xueqi
Author information +
History +

摘要

数据稀疏是推荐系统面临的主要挑战之一。近年来,多源数据融合为解决数据稀疏问题提供了新思路。然而,现有方法大多假设对象在不同数据源中具有相同的表示,这种硬约束方式无法刻画对象在不同数据源中的差异性。该文提出一种基于软约束矩阵分解的推荐算法,通过约束不同数据源中对象的隐因子向量,能够同时刻画同一对象表示的共性及其在不同数据源中的差异性。在两个数据集上的实验表明,该文提出的软约束矩阵分解算法在准确率方面优于现有的单数据源推荐算法和多源数据硬约束融合推荐算法,可以有效解决推荐系统面临的数据稀疏问题。

Abstract

Data sparsity is a challenge forrecommender systems.In recent years, the integration of data from different sources provides a promising direction for the solution of this issue. However, most existing methods for data integration assume that the representation of a single user/item is the same across different contexts, which blocksthe depiction of the distinct characteristics of different contexts. In this paper, we propose a matrix factorization model with soft constraint that the difference between the representations of a single user/item is minimized together with the error function of matrix factorization model. Experiments on two datasets demonstrate that the proposed model outperforms thestate-of-the-art models, especially on the case where the data is sparse in only one resource.

关键词

协同过滤 / 推荐系统

Key words

collaborative filtering / recommender system

引用本文

导出引用
满 彤,沈华伟,黄俊铭,程学旗. SCMF:一种融合多源数据的软约束矩阵分解推荐算法. 中文信息学报. 2017, 31(4): 174-183
MAN Tong, SHEN Huawei, HUANG Junming, CHENG Xueqi. SCMF: A Matrix Factorization Model With Soft. Journal of Chinese Information Processing. 2017, 31(4): 174-183

参考文献

[1] Adomavicius Gediminas, Alexander Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[J] . Knowledge and Data Engineering, IEEE Transactions, 2005, 17(6): 734-749.
[2] Sarwar Badrul, et al. Item-based collaborative filtering recommendation algorithms[C] //Proceedings of the 10th International Conference on World Wide Web. ACM, 2001.
[3] Desrosiers, Christian, George Karypis. A comprehensive survey of neighborhood-based recommendation methods[M] . Recommender systems handbook. Springer US, 2011: 107-144.
[4] Koren Yehuda. Factorization meets the neighborhood: a multifaceted collaborative filtering model[C] //Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2008.
[5] Koren Yehuda, Robert Bell, Chris Volinsky. Matrix factorization techniques for recommender systems[J] . Computer,2008, 42(8): 30-37.
[6] Salakhutdinov Ruslan, Andriy Mnih. Probabilistic matrix factorization[J] .Advances in Neural Information Processing Systems, 2008(20): 1257-1264.
[7] Herlocker Jonathan L, et al. Evaluating collaborative filtering recommender systems[J] . ACM Transactions on Information Systems (TOIS) 2004,22(1): 5-53.
[8] Park Yoon-Joo, Alexander Tuzhilin. The long tail of recommender systems and how to leverage it[C] //Proceedings of the 2008 ACM Conference on Recommender Systems. ACM, 2008.
[9] Ma Hao, Irwin King, Michael R, Liu. Learning to recommend with social trust ensemble[C] //Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information RetrievAL. ACM, 2009.
[10] Koenigstein Noam, Gideon Dror, Yehuda Koren. Yahoo! music recommendations: modeling music ratings with temporal dynamics and item taxonomy[C] //Proceedings of the 5th ACM Conference on Recommender Systems. ACM, 2011.
[11] Chen, Tianqi, et al. SVDFeature: a toolkit for feature-based collaborative filtering[J] . The Journal of Machine Learning Research, 2012, 13(1): 3619-3622.
[12] Yu, Xiao, et al. Personalized entity recommendation: a heterogeneous information network approach[C] //Proceedings of the 7th ACM International Conference on Web Search and Data Mining. ACM, 2014.
[13] Jamali, Mohsen, Laks Lakshmanan. HeteroMF: recommendation in heterogeneous information networks using context dependent factor models[C] //Proceedings of the 22nd International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2013.
[14] Li C Y, Lin S D. Matching users and items across domains to improve the recommendation quality[C] //Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2014: 801-810.
[15] Ozsoy, Makbule Gulcin, Faruk Polat, Reda Alhajj. Modeling individuals and making recommendations using multiple social networks[C] //Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015. ACM, 2015.
[16] Berk Shlomo, Tsvi Kuflik, Francesco Ricci. Cross-domain mediation in collaborative filtering[M] . User Modeling 2007. Springer Berlin Heidelberg, 2007: 355-359.
[17] Pan Weike, et al. Transfer learning in collaborative filtering for sparsity reduction[C] //Proceedings of the 24rd AAAI Conference on Artificial Intelligence, 2010.
[18] Singh Ajit P, Geoffrey J Gordon. Relational learning via collective matrix factorization[C] //Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2008.
[19] Tong Man, Huawei Shen, Junming Huang, Xueqi Cheng. Context-adaptive matrix factorization for multi-context recommendation[C] //Proceedings of the 24th ACM International Conference on Information and Knowledge Management (CIKM 2015), Melbourne, Australia. October 2015: 901-910.
[20] Tong Man, Huawei Shen, Xiaolong Jin, Xueqi Cheng. Cross-domain recommendation: an embedding and mapping approach[C] //Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI 2017), Melbourne, Australia. August 2017: 2464-2470.
[21] Werbos, Paul J. Backpropagation through time: what it does and how to do it[C] //Proceedings of the IEEE, 1990, 78(10): 1550-1560.
[22] Huang, Junming, et al. Exploring social influence via posterior effect of word-of-mouth recommendations[C] //Proceedings of the 5th ACM International Conference on Web Search and Data Mining. ACM, 2012.
[23] Hu, Liang, et al. Personalized recommendation via cross-domain triadic factorization[C] //Proceedings of the 22nd International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2013.
[24] Rendle, Steffen, et al.BPR: bayesian personalized ranking from implicitfeedback[C] //Proceedings of the 25th Conference on Uncertainty in Artificial intelligence. AUAI Press, 2009.
[25] Rumelhart David E, Geoffrey E Hinton, Ronald J Williams. Learning representations by back-propagating errors[J] . Cognitive modeling, 1988,5(3): 533-536.

基金

国家自然科学基金(61202215,61232010,61425016);信息网络安全公安部重点实验室开放课题
PDF(3841 KB)

821

Accesses

0

Citation

Detail

段落导航
相关文章

/