微博社交网络的用户影响力评价方法

吴 慧,张绍武,林鸿飞

PDF(1447 KB)
PDF(1447 KB)
中文信息学报 ›› 2017, Vol. 31 ›› Issue (4) : 184-190.
情感分析与社会计算

微博社交网络的用户影响力评价方法

  • 吴 慧,张绍武,林鸿飞
作者信息 +

Evaluation of the User's Influence on Microblog

  • WU Hui, ZHANG Shaowu, LIN Hongfei
Author information +
History +

摘要

该文主要研究在微博社交网络中怎样评价用户的影响力。在影响用户影响力的众多因素中,该文认为用户的传播能力越强,用户的信息便可以更快地在网络中扩散,其影响力也越大。和传统的用户影响力评价方法相比,该文综合考虑用户的活跃度和用户所发微博质量两个方面的因素,得到用户的影响力权重,然后把每一个用户作为社交网络中的节点,计算其在社交网络中的影响力。通过在公开语料集和真实数据中的实验,表明该方法是可行的,比传统的用户影响力评价方法更能客观、真实地反映用户的实际影响力。

Abstract

This paper investigates the evaluation of the user influence on Sina microblog. Among various factors, a user is considered as more influential if his information is disseminated faster to a larger extent. Compared with traditional methods, the user's active degree and the quality of posts are both taken into consideration. Treating each user as a node in the social network, the final user influence is estimated. The experiments on both public dataset and real dataset from Sina microblog show the validity of the method.

关键词

社交网络 / 用户影响力 / 活跃度 / 微博质量

Key words

social network / user influence / active degree / microblog quality

引用本文

导出引用
吴 慧,张绍武,林鸿飞. 微博社交网络的用户影响力评价方法. 中文信息学报. 2017, 31(4): 184-190
WU Hui, ZHANG Shaowu, LIN Hongfei. Evaluation of the User's Influence on Microblog. Journal of Chinese Information Processing. 2017, 31(4): 184-190

参考文献

[1] Java A, Song X, Finin T, et al. Why we twitter: understanding microblogging usage and communities[C]//Proceedings of knowledge discovery and data mining. 2007: 56-65.
[2] Zhao D, Rosson M B. How and why people Twitter: the role that micro-blogging plays in informal communication at work[C]//Proceedings of international conference on supporting group work, 2009: 243-252.
[3] Cha M, Haddadi H, Benevenuto F, et al. Measuring user influence in Twitter: the million follower fallacy[C]//Proceedings of international conference on weblogs and social media, 2010: 10-17.
[4] 石磊,张聪,卫琳.引入活跃指数的微博用户排名机制[J].小型微型计算机系统,2012(1): 110-114.
[5] Boyd D, Golder S A, Lotan G, et al. Tweet, Tweet, Retweet: Conversational Aspects of Retweeting on Twitter[C]//Proceedings of hawaii international conference on system sciences, 2010: 1-10.
[6] 张华平,孙梦姝,张瑞琪,等.微博博主的特征与行为大数据挖掘[J].中国计算机学会通讯,2014(6): 36-43.
[7] Yamaguchi Y, Takahashi T, Amagasa T, et al. TURank: twitter user ranking based on user-tweet graph analysis[C]//Proceedings of web information systems engineering, 2010: 240-253.
[8] Weng J S, Lim E P, Jiang J, et al. TwitterRank: finding topic-sensitive influential twitterers[C]//Proceedings of the 3rd ACM International Conference on Web Search and Data Mining(WSDM 2010). New York, USA. ACM 2010: 261-270.
[9] 王琛,陈庶樵.一种改进的微博用户影响力评价算法[J].信息工程大学学报,2013(6): 380-384.
[10] Ye S, Wu S F. Measuring message propagation and social influence on Twitter. com[C]//Proceedings of social informatics, 2010: 216-231.
[11] Romero D M, Galuba W, Asur S, et al. Influence and passivity in social media[C]//Proceedings of european conference on principles of data mining and knowledge discovery, 2011: 18-33.
[12] 原福永,冯静,符茜茜.微博用户的影响力指数模型[J].情报分析与研究,2012(6): 60-64.
[13] Lu L, Zhang Y, Yeung C H, et al. Leaders in Social Networks, the Delicious Case[J]. PLOS ONE, 2011,6(6): e21202.
[14] Page Lawrence, Brin Sergey. The PageRank citation ranking: bring order to the web[R]. Technical report,Stanford Digital Library Technologies Project.1998.

基金

国家自然科学基金(61562080,61632011,61572102);国家重点研发计划(2016YFB1001103);教育部留学回国人员科研启动基金和高等学校博士学科点专项科研基金资助课题(20090041110002)
PDF(1447 KB)

Accesses

Citation

Detail

段落导航
相关文章

/