融合用户观点的社会影响力分析

陈 畅,魏晶晶,廖祥文,林柏钢,陈国龙

PDF(3977 KB)
PDF(3977 KB)
中文信息学报 ›› 2017, Vol. 31 ›› Issue (4) : 191-198.
情感分析与社会计算

融合用户观点的社会影响力分析

  • 陈 畅,魏晶晶,廖祥文,林柏钢,陈国龙
作者信息 +

Social Influence Analysis Considering User Opinion

  • CHEN Chang, WEI Jingjing, LIAO Xiangwen, LIN Bogang, CHEN Guolong
Author information +
History +

摘要

社交媒介已经成为了一种分享交换信息的重要平台,识别出其中影响力高的用户已经广泛地应用于推荐系统、专家识别、广告投放等应用。该文提出了一种受限张量分解方法,其能识别出给定主题下影响力高的用户,同时保持其影响力的极性分布(例如正面、中性、负面)。该方法通过拉普拉斯矩阵引入用户主题相似性约束,控制张量分解过程,使用分解结果计算用户影响力得分。实验结果表明,该方法在社会影响力分析中的性能优于OOLAM、TwitterRank等基准算法,并具有良好的可扩展性。

Abstract

Social media has become an popular platform for sharing and exchanging information. The identification of users of social influence has already been applied into many applications including recommendation systems, experts finding, social advertising et al. This paper proposes a constrained tensor factorization method to identify users with high social influence. In the factorization result, the polairy allocation of influence is preserved (i.e. positive, neutral and negative influence). This method fuses topical similarity of users by Laplacian matrix, which would control tensor factorization to approximate the user influence. Experimental results demonstrate that the method outperformes the OOLAM, TwitterRank etc. in terms of ranking accuracy.

关键词

张量分解 / 观点 / 拉普拉斯矩阵 / 社会影响力分析

Key words

tensor factorization / opinion / Laplacian matrix / social influence analysis

引用本文

导出引用
陈 畅,魏晶晶,廖祥文,林柏钢,陈国龙. 融合用户观点的社会影响力分析. 中文信息学报. 2017, 31(4): 191-198
CHEN Chang, WEI Jingjing, LIAO Xiangwen, LIN Bogang, CHEN Guolong. Social Influence Analysis Considering User Opinion. Journal of Chinese Information Processing. 2017, 31(4): 191-198

参考文献

[1] Tang J, Sun J, Wang C, et al. Social influence analysis in large-scale networks[C] //Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009: 807-816.
[2] Bakshy E, Eckles D, Yan R, et al. Social influence in social advertising: evidence from field experiments[C] //Proceedings of the 13th ACM Conference on Electronic Commerce. Valencia, Spain, 2012: 146-161.
[3] Rashid A M, Karypis G, Riedl J. Influence in ratings-based recommender systems: An algorithm-independent approach[C] //Proceedings of the 15th SIAM International Conference on Data Mining. California, USA, 2005: 556-560.
[4] Domingos P, Richardson M. Mining the network value of customers[C] //Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA, 2001: 57-66.
[5] Liu L, Tang J, Han J, et al. Learning influence from heterogeneous social networks[J] . Data Mining and Knowledge Discovery, 2012, 25(3): 511-544.
[6] Iwata T, Shah A, Ghahramani Z. Discovering latent influence in online social activities via shared cascade poisson processes[C] //Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Chicago, USA, 2013: 266-274.
[7] Mehmood Y, Barbieri N, Bonchi F, et al. Csi: Community-level social influence analysis[M] .Machine learning and knowledge discovery in databases. Springer Berlin Heidelberg, 2013: 48-63.
[8] 张玥,张宏莉,张伟哲. 基于幂律分布的网络用户快速排序算法[J] . 中文信息学报, 2012,26(4): 122-128.
[9] 郭岩,刘春阳,余智华,等. 网络舆情信息源影响力的评估研究[J] . 中文信息学报. 2011,25(3): 64-71.
[10] Weng J, Lim E P, Jiang J, et al. Twitterrank: finding topic-sensitive influential twitterers[C] //Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. New York City, USA, 2010: 261-270.
[11] Cai K, Bao S, Yang Z, et al. OOLAM: an opinion oriented link analysis model for influence persona discovery[C] //Proceedings of the 4th ACM International Conference on Web Search and Data Mining. Hong Kong, China, 2011: 645-654.
[12] Cui P, Wang F, Liu S, et al. Who should share what?: item-level social influence prediction for users and posts ranking[C] //Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. Beijing, China, 2011: 185-194.
[13] Dunlavy D M, Kolda T G, Acar E. Temporal link prediction using matrix and tensor factorizations[J] . ACM Transactions on Knowledge Discovery from Data (TKDD), 2011, 5(2): 10.
[14] Rendle S, Schmidt-Thieme L. Pairwise interaction tensor factorization for personalized tag recommendation[C] //Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. New York City, USA, 2010: 81-90.
[15] Kolda T G, Bader B W. Tensor decompositions and applications[J] . SIAM Review,2009, 51(3): 455-500.
[16] Wang C, He X, Bu J, et al. Image representation using Laplacian regularized nonnegative tensor factorization[J] . Pattern Recognition, 2011, 44(10): 2516-2526.
[17] Davidson I, Gilpin S, Walker P B. Behavioral event data and their analysis[J] . Data Mining and Knowledge Discovery, 2012, 25(3): 635-653.
[18] Zhang Z Y, Li T, Ding C. Non-negative tri-factor tensor decomposition with applications[J] . Knowledge and Information Systems, 2013, 34(2): 243-265.

基金

国家自然科学基金青年项目(61300105);教育部博士点基金联合资助项目(2012351410010);福建省科技重大专项项目(2013H6012);福州市科技计划项目(2012-G-113,2013-PT-45)
PDF(3977 KB)

Accesses

Citation

Detail

段落导航
相关文章

/