社交网络用户在在线媒体中点播行为预测

刘 强,李静远,王元卓,刘 悦,任 彦

PDF(2677 KB)
PDF(2677 KB)
中文信息学报 ›› 2017, Vol. 31 ›› Issue (4) : 199-207.
情感分析与社会计算

社交网络用户在在线媒体中点播行为预测

  • 刘 强1,2,李静远1,王元卓1,刘 悦1,任 彦3
作者信息 +

Predicting Social-Network Users- “Likes” on Other Online Media

  • LIU Qiang1,2, LI Jingyuan1, WANG Yuanzhuo1, LIU Yue1, REN Yan3
Author information +
History +

摘要

在线媒体快速发展,为用户带来丰富多彩信息的同时,用户的参与也给在线媒体本身带来巨大的经济利益。因此,如何通过精确预测用户的偏好以增加在线媒体点击,成为一个学术界和工业界均关注的问题。现有的预测方法主要是借助用户个人信息和历史行为来预测用户行为,然而此类方法没有考虑媒体本身缺乏用户信息造成无法预测的问题。随着社交网络的发展,在线媒体与服务运营商间的兼并或合作的增多,支持用户通过单一账户使用多个媒体网络服务的情况越来越常见,这就为基于用户在社交网络中的资料预测用户在其他媒体中的喜好提供海量可信的基础数据。该文基于社交网络Google+和视频媒体YouTube的数据,首先证明用户在YouTube偏好具有高度的集聚性,并提出用户在社交网络中偏好与其在线媒体点击行为具有关联性,基于这种关联性,该文使用社交网络用户信息预测用户在在线媒体中的点播行为。实验结果显示,使用社交网络用户信息可以有效预测用户偏好,预测准确率比仅使用媒体本身信息提高了17%,而且能满足用户个性化需求。

Abstract

Online media experienced a huge improvement in the last few years, causing the user preference prediction a substantial issue so as to increase the user's clicks. The data sparsity in both the user information and the historical behavior records deteriorates many well-known predication system. Based on data of Google users, this paper reveals that the user's “likes” on online media are converged. In particular, we detect the correlation between the user “likes” on online media and his profile in social network, suggesting that the user profile in social network can predict user's likes on online media. Based on the correlation, we apply the user's social network description to predict his “likes” on online media, resulting more than 17% improvement in precision compared with algorithms using only the user information from online media.

关键词

社交网络 / 在线媒体 / 用户偏好 / 预测

Key words

social network / online media / user likes / prediction

引用本文

导出引用
刘 强,李静远,王元卓,刘 悦,任 彦. 社交网络用户在在线媒体中点播行为预测. 中文信息学报. 2017, 31(4): 199-207
LIU Qiang, LI Jingyuan, WANG Yuanzhuo, LIU Yue, REN Yan. Predicting Social-Network Users- “Likes” on Other Online Media. Journal of Chinese Information Processing. 2017, 31(4): 199-207

参考文献

[1] Davidson J, Liebald B, Liu J, et al. The YouTube video recommendation system[C]//Proceedings of the fourth ACM Conference on Recommender Systems. ACM, 2010: 293-296.
[2] 王元卓,靳小龙.网络大数据: 现状与展望[J].计算机学报,2013,36(6): 1125-1138.
[3] Zhang Y, Pennacchiotti M. Predicting purchase behaviors from social media[C]//Proceedings of the 22nd International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2013: 1521-1532.
[4] 王元卓,于建业.网络群体行为的演化博弈模型分析方法[J].计算机学报,2015,38(2): 282-300.
[5] Adamopoulos P, Tuzhilin A. Recommendation opportunities: improving item prediction using weighted percentile methods in collaborative filtering systems[C]//Proceedings of the 7th ACM Conference on Recommender Systems. ACM, 2013: 351-354.
[6] Liu N H. Comparison of content-based music recommendation using different distance estimation methods[J]. Applied intelligence, 2013, 38(2): 160-174.
[7] Sarwar B, Karypis G, Konstan J, et al. Analysis of recommendation algorithms for e-commerce[C]//Proceedings of the 2nd ACM Conference on Electronic Commerce. ACM, 2000: 158-167.
[8] Pirasteh P, Jung J J, Hwang D. Item-based collaborative filtering with attribute correlation: A case study on movie recommendation[M].Intelligent Information and Database Systems. Springer International Publishing, 2014: 245-252.
[9] Wietsma R T A, Ricci F. Product reviews in mobile decision aid systems[C]//PERMID, 2005: 15-18.
[10] Aciar S, Zhang D, Simoff S, et al. Recommender system based on consumer product reviews[C]//Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence. IEEE Computer Society, 2006: 719-723.
[11] Yantao J, Yuanzhuo W, Jingyuan L, et al. Structural-interaction link prediction in microblogs[C]//Proceedings of the 22nd International Conference on World Wide Web Companion. International World Wide Web Conferences Steering Committee, 2013: 193-194.
[12] Guo S, Wang M, Leskovec J. The role of social networks in online shopping: information passing, price of trust, and consumer choice[C]//Proceedings of the 12th ACM Conference on Electronic Commerce. ACM, 2011: 157-166.
[13] Verbraken T, Goethals F, Verbeke W, et al. Using social network classifiers for predicting e-commerce adoption[M].E-Life: Web-Enabled Convergence of Commerce, Work, and Social Life. Springer Berlin Heidelberg, 2012: 9-21.
[14] Qumsiyeh R, Ng Y K. Predicting the ratings of multimedia items for making personalized recommendations[C]//Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2012: 475-484.
[15] Jianye Y, Yuanzhuo W, et al. Evolutionary analysis of online social network through social evolutionary game[C]//Proceedings of the WWW 14.
[16] Jianye Y, Yuanzhuo W, et al. Analysis of competitive information in social network based on evolutionary game model[C]//Proceedings of the SCA 2012.
[17] Yitzhaki S. Relative deprivation and the Gini coefficient[J]. The Quarterly Journal of Economics, 1979: 321-324.
[18] Rrnyi A. On measures of entropy and information[C]//Proceedings of Fourth Berkeley Symposium on Mathematical Statistics and Probability, 1961: 547-561.
[19] Steck H. Item popularity and recommendation accuracy[C]//Proceedings of the fifth ACM Conference on Recommender Systems. ACM, 2011: 125-132.

基金

国家“973”重点基础研究计划(2014CB340401,2013CB329602);国家自然科学基金(61173008,61232010,61303244,61370132);北京市科技新星计划(Z121101002512063);国家信息安全242计划(2012F86,2013F97)
PDF(2677 KB)

585

Accesses

0

Citation

Detail

段落导航
相关文章

/